
BluePlant Series

Utilization Manual
Rev. A 12/2013

Doc. Code: MU224600

General Supply Conditions

i

No part of this document may be copied or reproduced in any form without the prior written consent

of Altus Sistemas de Automação S.A. who reserves the right to carry out alterations without prior

advice.

According to current legislation in Brazil, the Consumer Defense Code, we are giving the following

information to clients who use our products, regarding personal safety and premises.

The industrial automation equipment, manufactured by Altus, is strong and reliable due to the

stringent quality control it is subjected to. However, any electronic industrial control equipment

(programmable controllers, numerical commands, etc.) can damage machines or processes controlled

by them when there are defective components and/or when a programming or installation error

occurs. This can even put human lives at risk.

The user should consider the possible consequences of the defects and should provide additional

external installations for safety reasons. This concern is higher when in initial commissioning and

testing.

The equipment manufactured by Altus does not directly expose the environment to hazards, since

they do not issue any kind of pollutant during their use. However, concerning the disposal of

equipment, it is important to point out that built-in electronics may contain materials which are

harmful to nature when improperly discarded. Therefore, it is recommended that whenever

discarding this type of product, it should be forwarded to recycling plants, which guarantee proper

waste management.

It is essential to read and understand the product documentation, such as manuals and technical

characteristics before its installation or use.

The examples and figures presented in this document are solely for illustrative purposes. Due to

possible upgrades and improvements that the products may present, Altus assumes no responsibility

for the use of these examples and figures in real applications. They should only be used to assist user

trainings and improve experience with the products and their features.

Altus warrants its equipment as described in General Conditions of Supply, attached to the

commercial proposals.

Altus guarantees that their equipment works in accordance with the clear instructions contained in

their manuals and/or technical characteristics, not guaranteeing the success of any particular type of

application of the equipment.

Altus does not acknowledge any other guarantee, directly or implied, mainly when end customers are

dealing with third-party suppliers.

The requests for additional information about the supply, equipment features and/or any other Altus

services must be made in writing form. Altus is not responsible for supplying information about its

equipment without formal request.

COPYRIGHTS

Nexto, Ponto Series, MasterTool, Grano , WebPLC and BluePlant are registered trademarks of Altus

Sistemas de Automação S.A.

Windows, Windows NT and Windows Vista are registered trademarks of Microsoft Corporation.

Summary

ii

Summary

1. BLUEPLANT TECHNICAL SUPPORT .. 1

Introduction ... 1
Documents Related to this Manual .. 1
Visual Inspection ... 2
Technical Support ... 2
Warning Messages Used in this Manual ... 2

2. BLUEPLANT SERIES ... 3

BluePlant Characteristics ... 3
BluePlant Models ... 3
Available Models ... 3
Related Products .. 4
Solution for System Integrators ... 4
Accessories ... 5

3. BLUEPLANT TECHNICAL DESCRIPTION ... 6

Models General Features .. 6
Common General Features ... 7
General Features ... 8

Intrinsic Safety Software ... 8
Superior Graphical Engine .. 8
Maintenance Capabilities, Testing and Enhanced Diagnostics ... 8
Built-in Servers and .NET Extensions .. 8

Innovative Product Features .. 9
Real Time Database (Tags) ... 9
.NET Languages and Scripts ... 9
Alarms and Security .. 10
Trend and Historian ... 10
Devices and Networks ... 10
Datasets ... 11
Reports .. 12
Client Displays .. 12
Runtime Objects .. 12
Module Isolation ... 13
Runtime and Diagnostics Tools .. 13
Project Test and Deployment .. 13
Communication Drivers .. 14

4. BLUEPLANT ... 15

Installation and Operation Minimum Requirements ... 15
Installation ... 16
Licenses and Hardkey ... 18
Starting BluePlant ... 19

Project Management .. 19
Getting Started with BluePlant .. 21

Selecting the Demo Project ... 21

Summary

iii

Creating a New Project ... 21
User Interface .. 21
Creating Tags in the Project .. 22
Associating Tags to a Communication Protocol ... 24
 Including Objects in the Main Screen .. 26
Running a Project .. 29

5. BLUEPLANT MAIN MENU ... 34

Application Editing ... 34
Application Diagramming .. 35
Application Execution ... 35
Application Information ... 36

6. BLUEPLANT COMPONENTS ... 38

Edit Menu ... 38
Editing Tags .. 38
Editing Security Settings ... 47
Editing Devices ... 50
Editing Alarms .. 58
Editing Databases .. 61
Editing Scripts ... 73
Editing Displays .. 77
Editing Reports .. 83

Draw Menu .. 86
Selection Tools .. 88
Geometric Objects ... 89
Display Components ... 89
Input and Output Text Tools ... 89
Symbols Library .. 91
Advanced Controls .. 91
Alarm... 91
Trend ... 93
Data Grid ... 95
Horizontal Toolbar .. 97
Dynamic Configuration ... 98
CodeBehind ... 105
Symbols ... 106

Info Menu ... 109
Project ... 109
Redundancy ... 111
Track ... 113
Notes ... 115

Application Tools ... 116
Tstartup ... 116
PropertyWatch ... 117
TraceWindow .. 118
ModuleInformation ... 119

Runtime Objects .. 119
Namespace Tag ... 121
Namespace Security .. 130
Namespace Alarm ... 133
Namespace Device .. 138
Namespace Dataset ... 140
Namespace Script .. 151

Summary

iv

Namespace Display ... 153
Namespace Report .. 154
Namespace Info ... 156
Namespace Server ... 161
Namespace Client .. 163

Advanced Settings ... 169
Command Lines .. 169
Running BluePlant as a Windows Service .. 170
Remote Clients .. 170
Installing Web Server in IIS .. 171

7. SCENARIOS OF TYPICAL SYSTEMS ... 178

Systems Configurations .. 178
Standalone System .. 178
Distributed Inputs/Outputs System ... 178
Client and Server System .. 179
Redundant Server System ... 180
Control System .. 181
Distributed and Redundant Distributed Control System ... 182
Load Sharing System .. 183

8. GLOSSARY ... 184

1. BluePlant Technical Support

1

1. BluePlant Technical Support

Introduction

Altus BluePlant is the ultimate solution for supervisory, control and data acquisition systems. Altus

reputation stands for excellence in delivering automation systems and process control products, like

Programmable Logic Controllers (PLCs) and Remote Terminal Units (RTUs), offering superior

performance, technology in the state of the art and features like redundancy, online change, hot-

swapping, and high connectivity among other high-end features. The extensive experience in

industrial automation systems was the development base for this SCADA/HMI software product. The

expertise and portfolio of these many different automation products grant to Altus a key position in

delivering complete automation solutions.

Altus BluePlant fulfills requirements like high-performance, enhanced connectivity capabilities, an

extremely rich and powerful graphical user interface and superior real-time data acquisition engines.

The selection of drivers embedded in BluePlant, the capability of distributed engineering and

redundancy, OPC support, brings a new and unique user experience. Created on Microsoft’s

Windows Presentation Foundation (WPF), BluePlant technology allows users to get the best of

current graphic cards, resulting in applications with outstanding performance.

Altus BluePlant also brings the standard functionalities found in this product range, such as

interaction with database servers (SQL, PI, Oracle, Sybase, Informix and others), custom network

buses, a user-friendly alarm server and event notification module, a logging and reporting

component, an advanced historian server, business logic management capabilities as well as support

for local and remote clients, either running in computers, web, tablets and smartphones.

Figure 1-1. Altus BluePlant

Documents Related to this Manual

For additional information about BluePlant Series, you can examine other specific documents (user

manual and technical characteristics) in addition to this one. These documents are available in its last

review on www.altus.com.br.

Each product has a document (Technical Characteristics - CE) which describes its characteristics.

Additionally, the product may have User Manuals (manual’s codes are mentioned at CEs from the

respective modules).

It is advisable to consult the following document as a source of additional information:

1. BluePlant Technical Support

2

 BluePlant Technical Characteristics – CE124000

Visual Inspection

Prior to installation, we recommend performing a careful visual inspection of equipment, by

checking if there is damage caused by shipping. Make sure all components of your order are in

perfect condition. In case of defects, inform the transportation company and the nearest Altus

representative or distributor.

It is important to record the serial number of each item received, as well as software revisions, if any.

This information will be necessary if you need to contact Altus Technical Support.

Technical Support

To contact Altus Technical Support in São Leopoldo, RS, call +55 51 3589-9500. To find the

existent centers of Altus Technical Support in other locations, see our website (www.altus.com.br) or

send an email to altus@altus.com.br.

If the equipment is already installed, please have the following information when requesting

assistance:

 The installed system configuration (operational system, data base, used arquitecture and

hardware requirements compliance - computer)

 The BluePlant model in use and additional accessories

 The project content (used modules) from BluePlant programmer

Warning Messages Used in this Manual

In this manual, warning messages will present the following formats and meanings:

DANGER:
Relates potential causes, that if not noted, generate damages to physical integrity and health,
property, environment and production loss.

CAUTION:
Relates configuration details, application and installation that shall be followed to avoid
conditions that could lead to system fail, and its related consequences.

ATTENTION:
Indicate important details of configuration, application or installation to obtain the maximum
operation performance from the system.

2. BluePlant Series

3

2. BluePlant Series

BluePlant Characteristics

BluePlant runs natively on 64 bits machines with .NET Framework 4. There are different product

models to allow the choice of the best solution according to the users' needs. BluePlant can meet

from large-scale solutions to embedded applications. BluePlant models are compatible with 32 bit

computers legacy. The client displays can run on web browsers on Windows computers and on

Windows based mobile devices as well.

 Characteristics

BluePlant Enterprise Designed for Plant Process Management, Business Intelligence
(BI), realtime panels, SCADA, advanced HMI, process control
and optimization. Allows clients and distributed data acquisition.
The application size starts in 150 data points

BluePlant Lite Designed for panels, industrial computers, embedded devices,
and standalone systems. Mainly applied on machine interface
and small centralized projects. Application sizes range from 150
up to 1500 communication points

BluePlant Express This version of BluePlant is for evaluation only. It is not for field
installation, and is limited on 75 tags and one hour of runtime
execution

BluePlant Student Designed for schools and universities. Application size range from
150 up to 1500 communication points and one hour of runtime
execution

Table 2-1. BluePlant Models

To meet the needs of system integrators were developed solutions that allow the project development

as on BluePlant Lite or BluePlant Enterprise. These solutions for system integrators executes only

one hour the Runtime that can be performed the project tests and after this period is necessary to

restart the Runtime.

All solutions for system integrators communicate fully with all programmable controllers through the

main communication drivers integrated in the products.

BluePlant Models

BluePlant is divided in family/models according to the features and requirements of each application.

Thus it is possible to use the BluePlant model suitable for the application size to optimize system

performance. The total amount of available tags must be taken into consideration and this amount is

10 times higher than the communication point's quantity. The communication points are included in

the total amount. The available models are presented on Table 2-1 while on Erro! Fonte de

referência não encontrada. is the communication point's amount for each BluePlant model.

Available Models

The BluePlant is divided in models according with functionalities and requirements of each

application. The models available are: BluePlant Express, BluePlant Student, BluePlant Lite or

BluePlant Enterprise. The next option is the application size, which is divided in many models to

maximize the system performance. Also should be considered the total tags quantity available, being

this quantity 10 times the communication points quantity, where the communication points are

included in the total quantity.

2. BluePlant Series

4

BluePlant Enterprise

 (Communication
points)

BluePlant Lite

(Communication
points)

BluePlant Express

(Communication
points)

BluePlant Student

(Communication
points)

- - 75 -

150 150 - 150

300 300 - 300

500 500 - 500

1,500 1,500 - 1,500

2,500 - - -

5,000 - - -

15,000 - - -

25,000 - - -

50,000 - - -

100,000 - - -

Ultimate - - -

Table 2-2. Amount Communication Points per BluePlant Model

Related Products

The following table has the codes that must be used to purchase the product:

 BluePlant Enterprise BluePlant Lite BluePlant
Express

BluePlant
Student

Communication
Points

Engineering
Runtime

Runtime Engineering
Runtime

Runtime Engineering
Runtime

Engineering
Runtime

75 - - - - BP6400 -

150 BP1203 BP1103 BP2203 BP2103 - -

300 BP1205 BP1105 BP2205 BP2105 - -

500 BP1207 BP1107 BP2207 BP2107 - -

1,500 BP1209 BP1109 BP2209 BP2109 BP4400

2,500 BP1211 BP1111 - - - -

5,000 BP1213 BP1113 - - - -

15,000 BP1215 BP1115 - - - -

25,000 BP1217 BP1117 - - - -

50,000 BP1219 BP1119 - - - -

100,000 BP1221 BP1121 - - - -

Ultimate BP1299 BP1199 - - - -

Table 2-3. Related Products per BluePlant Model

Notes:

Ultimate: Applications with more than 100,000 communication points should use this license.

BluePlant Enterprise: This model comes with one BluePlant full client (remote rich client) other

accessories must be requested separately.

BluePlant Lite: This model comes with one BluePlant full client (remote rich client) and one

Internet Explorer full web client.

Solution for System Integrators

The following table shows the product codes that meet the needs of system integrators.

2. BluePlant Series

5

Code Description

BP5001 Solution for system integrators with temporary license – 1 year

BP5003 Solution for system integrators with temporary license – 3 years

BP5010 Solution for system integrators – BluePlant Lite

BP5020 Solution for system integrators – BluePlant Lite/Enterprise

Table 2-4. Solutions for System Integrators

Notes:

BP5001, BP5003: Solution that allows to develop projects both BluePlant Lite as BluePlant

Enterprise, with temporary license valid for 1 (one) year (BP5001) and 3 (three) years (BP5003) from

the date of recording.

BP5010: Solution that allows developing projects only on BluePlant Lite, unlimited license

expiration time.

BP5020: Solution that allows developing projects for BluePlant Lite and BluePlant Enterprise,

unlimited license expiration time.

Accessories

The following table has the accessories codes that can be used to purchased. These accessories only

are available for BluePlant Enterprise model.

Code Description

BP9501 Internet Explorer viewer web Client

BP9601 Rich full client

BP9701 Internet Explorer full web Client

Table 2-5. Accessories for BluePlant Enterprise

3. BluePlant Technical Description

6

3. BluePlant Technical Description

This chapter presents the technical characteristics of the BluePlant models, addressing the integral

parts of the system, its architecture and general characteristics.

Models General Features

 BluePlant Lite
BluePlant
Student

BluePlant
Express

BluePlant
Enterprise

Limited runtime execution No Yes Yes No

OPC DA server Yes Yes No Yes

C# language No Yes Yes Yes

Multi-threading scripts execution No No No Yes

Array tags (multiple dimensions) No No No Yes

User types (multiple levels) No No No Yes

Historian table configuration No No No Yes

Extension SDK and Toolkits No No No Yes

Server for iPad and iPhone clients No No No Yes

Concurrent remote Rich clients No Yes Yes Yes

Concurrent remote web clients
(Full and/or Viewer)

Yes, only 1 full
web client

Yes Yes Yes

Device node redundancy No Yes Yes Yes

Server redundancy No No No Yes

Graphical objects report No Yes Yes Yes

Extended alarms conditions No Yes Yes Yes

Project version control No Yes Yes Yes

Track changes by objects No Yes Yes Yes

Automatic historian compressing No No No Yes

WPF controls access No Yes Yes Yes

Hot Start No No No Yes

Test mode No Yes Yes Yes

Notes:

Limited runtime execution: Runtime execution limited in 1 hour. The runtime can be restarted.

C# language: It is possible create scripts using C# language.

Multi-threading scripts execution: This functionality allows create scripts and generate different

threads for each script created. When this feature is enabled, then the threads execution is concurrent.

When this feature is not enabled the threads execution is sequential.

User types (multiple levels): It is allowed create new data types and it is possible use up to 4 levels

chained of data types.

Extension SDK and Integration toolkits: It is possible create proprietary libraries (dlls), with

specific functions and use the projects.

3. BluePlant Technical Description

7

Concurrent remote rich clients: BluePlant should be installed on a remote machine and the licenses

must be present on a server machine. The number of concurrent remote rich clients depends on the

number of purchased licenses.

Concurrent remote web clients (Full and/or Viewer): The number of concurrent remote web

clients, both viewer and full are dependent of the number of purchased licenses except for BluePlant

Lite that allows only one remote client full and none remote client viewer.

Server redundancy: To use this functionality two servers and two hardkeys with their respective

licenses are necessary. Each server must have its own hardkey and then it is possible to configure the

servers as a redundant pair.

Track changes by objects: This feature allows track the changes done in the displays, tags, scripts,

modules and other modified objects in a project.

Hot start: It is possible to modify the application and overload it without stopping the system.

Common General Features

BluePlant Lite, BluePlant Express, BluePlant
Student and BluePlant Enterprise

Simultaneous protocols All BluePlant models have at least 4 channels

OPC client Yes

Open multiple projects Yes

VisualBasic .NET language Yes

Scripts for math expressions evaluation Yes

Integration with external SQL database Yes

Historian and logging Yes

Alarm and security Yes

WPF graphical editor Yes

Engineering and debugging tools Yes

Scripts to create .NET classes and tasks Yes

Report editor Yes

Track changes by tables Yes

Localization Yes

Notes:

Simultaneous Protocols: Simultaneous communication drivers running during runtime execution.

Track changes by tables: Tracking changes by tables informs what was modified, removed or

inserted, but not informs where the changes were done.

Localization: This feature translates display texts and alarms in Runtime.

3. BluePlant Technical Description

8

General Features

Intrinsic Safety Software

In order to ensure security and reliability, one of the key foundations for the development of the

BluePlant platform is that there is no use of C or C++ code, which entirely eliminates the risk of a

“clobbered or compromised” pointer and/or memory exceptions. Each process and execution thread,

whether internal or created to run in the BluePlant framework, runs in its own allocated and

“protected” space with built-in exception control, memory isolation, multithread control and real-

time synchronization. The legacy software development methodology employed with VBA,

VBScript and proprietary math and logic is replaced by compiled .NET languages. In the former

methodology the potential problems could only be detected during the runtime execution, while in

the latter, there is a complete script validation before runtime deployment with built-in protection,

which adds both performance and enhanced operational stability and security.

Superior Graphical Engine

The graphics in BluePlant are pure Windows Presentation Foundation (WPF) with full support for

XAML. This allows for seamless integration with geospatial maps and 3D models. The 3D models

can be directly presented, as well as linked to dynamic data with associated responses and behaviors

based on real-time values and events. A powerful WPF Graphical Editor is included with BluePlant.

The web clients rely on XBAP (browser-based applications and Silverlight) so there is no

requirement for the installation of any external Active-X component. In addition to the support that

allows web pages to be presented on smartphones, BluePlant offers support for graphics and reports

on Apple’s iPads and iPhones.

Maintenance Capabilities, Testing and Enhanced Diagnostics

The system provides seamless switching of project versions, allowing test mode applications to run

side-by-side in the same server with the production mode applications, for validation and quality

assurance, with built-in analysis of CPU usage and communication statistics of the runtime modules

and networks provided. Built-in hot-standby deployment for redundancy, alternate operating

locations, and disaster recovery are also included.

Built-in Servers and .NET Extensions

Besides the built-in modules for realtime database, external SQL and ERP connections, alarm and

events server, historian server and reporting, BluePlant allows complete access to the whole

Microsoft .NET Framework, for advanced customization and extensibility, without the addition of

any kind of third part application or external tool.

In addition to the previously mentioned features, BluePlant was architected from a "green field" and

was created entirely without the employ of any legacy code. It is a 100% managed code application

which allows users to leverage and take advantage of the full potential of the Microsoft .NET

Framework today as well as tomorrow. BluePlant has a configuration interface entirely created on

Microsoft’s Windows Presentation Foundation Graphics (WPF) and fully supports software as a

service (SaaS) deployment combined with typical on premise (local) installations, allowing BluePlant

users to access and to collaborate on development and projects anywhere in the world with just an

internet browser.

3. BluePlant Technical Description

9

Innovative Product Features

Real Time Database (Tags)

BluePlant supports the following built-in real-time data point types: Digital (Boolean), Analog

(Integer, Double and Decimals), Text Message, Counter, Timer and Date Time variables. Further,

can be defined types with multiple levels of inherence, reference tags and tri-dimensional arrays.

The real-time database guarantees, without requiring any additional programming, the

synchronization of data among multiple server processes and multiple client stations. A large set of

built-in properties, such as data quality, time-stamp, lock state and locked value, simplifies and

empowers the creation of the applications.

 Real-time data base (Tags)

Extensive support to tag types
Digital, Analog Int, Analog Double, Analog Decimal, Text, Timer,
Counter, Date/Time (date and time variables)

Built-in data table tag type Access dataset query results on standard .NET data table object

Reference tags Use reference tags to switch the tag link on runtime execution

Tag arrays
Define tag arrays (one to three dimensions depending on product
version)

User-defined structs and types Define of own extension types to the real-time database

Tag properties
Extensive set of tag properties accessible on both configuration and
runtime

Table 3-1. Real Time Data Base (Tags)

.NET Languages and Scripts

BluePlant is a SCADA system that fully supports the Microsoft .NET languages in complete

integration within the Microsoft .NET Framework. The project scripts and logics can be written in

C# or VB.NET, and a built-in language converter allows to switch dynamically the created code

between the languages.

Inside the BluePlant framework, user can compile, cross-reference the objects and access directly

(using the Intellisense) the .NET classes and project objects, including alarms, reports and

communication nodes.

.NET languages provide a more powerful environment when compared to VBA or VBScript that are

interpreted languages, not compiled. These technologies leave many programming errors that are

only found when running a VBA or VBScript project in real-time, resulting many times in undesired

results and consequences. The managed environment of the Microsoft .NET Framework gives one

the support for finding and recovering from exceptions, thus providing a highly reliable environment

for the runtime system and applications.

 .NET Languages and Scripts

Create VB.NET functions and
procedures

Access BluePlant objects directly from the code

Run scripts on events and
scheduling

Easy connection to tags and process events using scripts

Support for class libraries Create users' own classes accessible to other scripts and displays

Built-in .NET editor with
Intellisense

Intellisense helps the user to select tag names and business objects
properties

Support for exceptions and trace
messages

The entire .NET Framework, external components and services are
easily integrated

Table 3-2. .NET Languages and Scripts

3. BluePlant Technical Description

10

Alarms and Security

These features allow to define multiple alarm levels for each point or tag and set a whole range of

behaviors, such as logging, acknowledgement, displaying, etc. (the behaviors are pre-packaged in

order to simplify the configuration). The security system defines the access levels to each display

object. Both alarm and security conditions are automatically replicated on redundant applications.

 Alarms and Security

Multiple alarm conditions Hi, HiHi, Lo, LoLo, rate of change and deviation

High resolution
Millisecond range timestamp (when available) using the remote I/O
time, not the computer time

Built-in visualization object
Online and historical graphical object, where it runs locally or in the
Web

Alarm group and item objects
Access alarms properties directly, e.g., "total alarms active”, with no
requirements to create application tags

Table 3-3. Alarms and Security

Trend and Historian

Blue Plant allows the creation of historian files on external databases, like Microsoft SQL Server or

Oracle, or even the use of the built-in Altus SQL Database. BluePlant enables to save the data based

on data change or group triggers and has an exclusive time-span option that prevents logging data

with a timestamp smaller than a defined preset, allowing the creation of more compact databases.

The access to OSIsoft's PI Server is also a possibility.

The time stamping feature may use the timestamp provided directly from the remote I/O, instead of

from the computer, providing increased event accuracy. The organization of the samples allows users

to include or remove tags for logging without losing compatibility with past data. A complete trend

chart object is also supplied for the visualization of both online and historical data.

 Trend and Historian

Connection with ADO databases
Historian information can be saved in any external database with
ADO.NET support

Built-in SQL database
When not defined as an external database, logging is on the internal
built-in SQL database

High resolution
Millisecond range timestamp (when available) using the remote I/O
time, not the computer time

Trigger by tag or by group
Allows the saving of a record according to tag change, or based on
process events

Historian dead band by Tag Allows the definition of the minimum tag variation to trigger recording

Minimum time span
configuration

Allows the definition of a minimum interval for recording, enabling the
creation of more compact databases

Database tables with multiple
tags

Allows the creation of a group of tags, and stores the tags on the
same data table to speed up recording and loading

Built-in trend visualization object
Online and historical graphical object, where it runs locally or in the
Web

Table 3-4. Trend and Historian

Devices and Networks

BluePlant is supplied with an OPC DA driver to get information from remote devices. Besides OPC,

BluePlant also supports customized communication drivers to directly access PLCs, remote I/O

systems, fieldbus standards, single and multi-loops, scanners, barcode readers, RFID devices, and

digital displays.

3. BluePlant Technical Description

11

The device configuration tool can import databases from OPC servers, CSV or text files. If the device

is compatible, it automatically implements multi-threading on TCP/IP networks or multi-serial

scenarios. The addressing syntax follows the naming convention of the remote device, making

configuration and maintenance much easier. A complete set of performance and diagnostics tools is

also included.

 Devices and Networks

Import data point configurations
Copies and pastes from Microsoft Excel, imports CSV or OPC server
databases

Communication runs on isolated
process

Full protection for runtime environment and enhanced performance
on multi-core CPUs

Easy configuration for multiple
channels

Automatically creates multiple threads on multi-serial or TCP/IP
protocols

Abstract naming for nodes and
stations

Provides an easy way to rename and maintain IP address and I/O
network configuration

Dynamic creation of optimized
blocks

Simple selection of Read and Write points based on the protocol,
and creation of optimized blocks

Points configuration follows
device syntax

When addressing device points, the same addressing is used as
PLC programming tools

Channels and nodes properties
Access properties directly, e.g., node status, application tags are not
required

Customization of write events
Easy setup for commands and events, write all events or only up or
down value changes

Table 3-5. Devices and Networks

Datasets

The Dataset Module included in BluePlant provides an easy-to-use interface to exchange data in real-

time with external databases, XML, CSV or text files and, as well as the possibility of accessing

tables and SQL queries.

For the most popular databases and data sources (Microsoft SQL Server, Oracle, CSV files,

Microsoft Access, PI, Firebird, Informix, Excel), BluePlant supplies pre-defined configurations that

reduce the settings management to a mouse-click. Any database that supports ODBC, ADO.NET or

OLE-DB can also be accessed. A built-in DB SQL Database Engine is supplied as an option of local

database for the application.

The data collected with the datasets can be dynamically mapped to real-time points/tags and can be

used on scripts or reports, or presented on displays using a powerful Data Grid Visual Object.

 Datasets

Access text, CSV and XML files Define real-time binding with tags and file contents

Define multiple database sources Easily manage multiple database connections

Tag mapping with data tables
High level configuration utility to manage the database tables used
in the project

Queries and mappings definition
Manage multiple queries triggered by process events and filter
conditions using real-time data points

Powerful data grid visualization
object

Comprehensive and powerful data grid object to create user
interfaces, local and on the Web

Table and queries properties
Access properties (e.g., row count) directly, where creation of
application tags not required

Table 3-6. Datasets

3. BluePlant Technical Description

12

Reports

BluePlant supports Web services, XML and other data-exchange interfaces to provide data for

external reporting tools. In contrast with other packages, where the reports are necessarily created in

another tool, BluePlant has its own built-in report editor.

The Report Editor allows the inclusion of dynamic text, dynamic graphical symbol and charts,

dataset and query results, in a complete and easy to use editor. The reports can be saved in HTML,

text, PDF or XPS formats and are easily presented in remote clients and Web displays.

 Reports

Built-in editor
User-friendly text editor, allowing the inclusion of tables, images,
hyperlinks and text formatting

Text, HTML and XPS support
Save reports in multiple formats, such as XPS format that allows
easy deployment in distributed environments

Copy and paste
To edit in Microsoft Word or in HTML or RTF editor, just copy and
paste the BluePlant contents

Easily embedded real-time tags With one click, user can add real-time data values on reports

Table 3-7. Reports

Note:

It is not possible to make reports based on dynamic results from the database, that is, the search

should always return an exact number of rows.

Client Displays

The built-in graphics editor of BluePlant uses the Microsoft WPF technology to allow the easy

creation of complete user interfaces with real-time mapping for process values and tags. A powerful

and complete set of dynamic animations are also included.

The displays are internally saved using XAML, which provides resolution independence, isolation

from the code and easy extensibility. A symbol library, where the symbols can also keep a dynamic

link with the library, speeds up the synoptic process creation. All client technologies support

redundant server scenarios.

Three technologies are used on remote clients:

 BluePlant Visualizer Clients: runs as a desktop application and allows the blocking of the

Windows task switch (CTRL+ALT+DEL and ALT+TAB Windows keys). This is ideal for Intranet

operators/users with high security requirements

 Web Smart Clients: uses the Microsoft .NET Smart Client technology and installs on remote

clients with a single-click and no administration requirements. The application is automatically

updated on the remote clients, when it is updated on the server. BluePlant uses all the power of

the remote computer and yet retains the advantages of a centralized installation.

 XBAP Partial Trust Clients: the client displays can run directly from web browsers, with no

installation of any software required (nor any Active-X controls). The Partial Trust Clients

guarantees that the client displays will run in a completely isolated environment. As in the case

of the Smart Clients, when the application is updated on the server, it is automatically updated on

the clients too

Runtime Objects

More advanced than most systems, where the creation of tags or variables for all internal properties

and custom logics for projects are necessary, BluePlant allows the applications to directly access all

the runtime objects that were created in the project.

This means that temporary tags are not required to manage the status of PLC network nodes, the total

number of alarms in a group, or the number of rows in a dataset. It is possible to access runtime

3. BluePlant Technical Description

13

objects (representing a network node), an alarm group or dataset, and display required information or

take action directly through their built-in properties.

Module Isolation

For enhanced performance, security and reliability, the most CPU consuming and sensitive modules,

such as scripts, datasets, devices (communication drivers), reports and displays, run in their own

processes, or application domain, in their own thread, independently from the server real-time

database.

In addition to the previously described advantages, the BluePlant architecture also allows distribution

of the data acquisition application, or any CPU intensive application, in different computers in a

distributed environment, providing increased flexibility to implement many redundant scenarios and

simplification for field maintenance.

Runtime and Diagnostics Tools

The property watch tool allows you to inspect and simulate values in all modules and objects and

also start and stop all modules individually.

The trace window tool automatically generates system messages about important runtime events and

can be easily extended to issue specific messages connected with script events, data point/tag

changes or user actions.

The module information tool is an advanced performance and profiling tool that provides internal

information for the entire runtime environment.

 Runtime and Diagnostics Tools

Test mode
Run projects with protections, such as, read-only on external
devices or temporary files in the historian

Module information
Advanced tools for performance profiling and internal systems
diagnostics

Localization tools
Create the Operator User Interface in any number of languages, and
dynamically, switch between them in runtime mode

Trace window
When creating your an application, this tool provides tag monitoring
and system diagnostics messages

Property watch
Verify and simulate tag values and properties, start and stop
functional modules

Table 3-8. Runtime and Diagnostics Tools

Project Test and Deployment

Before executing an application or project, user may use the exclusive BluePlant “Test Mode” that

runs the project or application in a safe testing environment. In “Test Mode”, no commands are sent

to the remote controllers (only the read commands are sent); alarms and historian saves data on

temporary files and the external real-time databases are accessed in read-only mode.

After successfully completing testing, it is needed to run the “Startup” option for full functionality.

When the project or application is ready to be deployed in the field, it should be used the “Publish”

feature to set up redundancy options (if applicable), and to create a read-only, version controlled,

copy of project for the field installation.

3. BluePlant Technical Description

14

 Project Test and Deployment Tools

Open multiple projects Simultaneously open multiple projects on the same computer

Remote engineering Remotely access and edit the project configuration

Run as a Windows service Run the runtime server installed as a Windows service

Switch applications protection
Protect from unauthorized application switch on operator interfaces

using CTRL+ALT+DEL Windows keys or others

Startup shortcuts
Use simple startup shortcuts and parameters for startup
customization

Single file project and embedded
resources

The entire project configuration is saved on a single secured file
including all images and bitmaps used on displays and reports

Table 3-9. Project Test and Deployment Tools

Communication Drivers

There are several drivers available for the main manufacturers of PLCs and automation systems.

 Communication Drivers

Altus

ALNET I

ALNET II

FBS

MODBUS
RTU-TCP

RTU-TCP Slave

Allen Bradley CIP (Control Logix)

OPC

DA

XML-DA

UA

Xi

Siemens S7 Ethernet

Table 3-10. Communication Drivers

4. BluePlant

15

4. BluePlant

Installation and Operation Minimum Requirements

The BluePlant Student, BluePlant Express and BluePlant Lite models present four available channels

while the BluePlant Enterprise model counts with 64. The following tables show the minimum

requirements for the installation and operation of BluePlant, using different amounts of channels.

 BluePlant Express, BluePlant Student, BluePlant Lite and
BluePlant Enterprise (up to 4 channels)

Platform PC with Windows XP® (32-bit), Windows Vista® (32-bit), Windows
7® (32-bit or 64-bit), Windows 8® (32-bit or 64-bit), Windows
Server2008 or Windows Server2012

Processor Intel Core 2 Duo (min)

Disk space 1 Gbyte (min), 2 Gbytes (recommended)

RAM 2 Gbytes (min), 4 Gbytes (recommended)

Resolution 1024 x 768 (min), 1280 x 1024 (recommended)

Language Any language

Table 4-1. 4-Channel Configuration up to 4 channels

 BluePlant Enterprise (up to 8 channels)

Platform PC with Windows XP® (32-bit), Windows Vista® (32-bit), Windows
7® (32-bit or 64-bit), Windows 8® (32-bit or 64-bit), Windows
Server2008 or Windows Server2012

Processor Intel Core i5 (min)

Disk space 1 Gbyte (min), 2 Gbytes (recommended)

RAM 4 Gbytes (min), 6 Gbytes (recommended)

Resolution 1024 x 768 (min), 1280 x 1024 (recommended)

Language Any language

Table 4-2. 8-Channel Configuration up to 8 channels

 BluePlant Enterprise (up to 16 channels)

Platform PC with Windows XP® (32-bit), Windows Vista® (32-bit), Windows
7® (32-bit or 64-bit), Windows 8® (32-bit or 64-bit), Windows
Server2008 or Windows Server2012

Processor Intel Core i7 (min)

Disk space 1 Gbyte (min), 2 Gbytes (recommended)

RAM 6 Gbytes (min), 8 Gbytes (recommended)

Resolution 1024 x 768 (min), 1280 x 1024 (recommended)

Language Any language

Table 4-3. 16-Channel Configuration up to 16 Channels

Note:

Platform: It is necessary to install Microsoft .NET Framework 4.0.

4. BluePlant

16

ATTENTION:
The amount of channels and data acquisition performance are the main reasons to select operation
requirements. If the project requires more than 16 channels or any other specific project demands, it
is strongly recommended to contact the Altus Technical Support via the website www.altus.com.br
or e-mail altus@altus.com.br.

Installation

To run the BluePlant software installation is necessary to perform the download of the installation

file from the site www.altus.com.br. After that, the user must close all the programs running on PC,

double-click the installation file, and then click Next.

The license agreement screen that appears should be read carefully. If the license terms are accepted,

the user should select the corresponding option. The following installation screen will appear. By a

click on "Next" button, the installation proceeds.

Figure 4-1. Screen of the BluePlant License Agreement

During the installation, another agreement screen will appear, which should be read carefully. It

refers to the Advosol OPC Core Components software. This software offers a full support in .NET

platform for all major OPC standards, since OPC is a set of standardized specifications. Such patterns

resulted from the collaboration of several leading automation suppliers around the world working in

cooperation with Microsoft. The specification defined a standard set of objects, interfaces and

methods for use in process control and automation applications to facilitate interoperability.

Currently, there are hundreds of OPC Data Access servers and clients.

If the terms are accepted, the check box must be selected to continue the installation. The following

installation screen will appear. By a click on "Next" button, the installation proceeds.

4. BluePlant

17

Figure 4-2. Screen of the Advosol License Agreement

The following screen shows the installation progress of the Advosol OPC Core Components. The

user must wait until all the required files are completely installed on the computer, which may take

several minutes, depending on its configuration.

Figure 4-3. Advosol Installation Screen

When the Advosol OPC Core Components is finished, the BluePlant installation gets started. Wait

until the required files are installed on the computer. This process also may take several minutes

depending on the computer's configuration.

4. BluePlant

18

Figure 4-4. BluePlant Installation Screen

After the installation is complete, the following screen will be displayed. The "Finish" button should

be selected to finish the installation procedure.

Figure 4-5. Screen of the Closing of the BluePlant Installation

Upon completion of these steps, BluePlant is installed and ready to use. To execute it, user should

click on the "BluePlant" shortcut created during the installation process.

Licenses and Hardkey

Some BluePlant models have features which are enabled through licenses present in a hardkey. The

hardkey is a physical environment where the required licenses are saved. In order to release the

features present in the same hardkey, it must be connected to the server where the user will run the

project.

4. BluePlant

19

In the table 2 1, can be checked the available BluePlant models and, except for the Express model, all

the others are enabled by licenses present in hardkey.

Once the hardkey is connected to the server, the information can be viewed via the tab "License" as

shown in Figure 4-9.

ATTENTION:
If the hardkey is damaged, and the access to its data is compromised, the enabled features will no
longer be available. In this case the user should contact Altus Technical Support via the website
www.altus.com.br or e-mail altus@altus.com.br.

Starting BluePlant

Once BluePlant has been installed on the computer, a double click on the following icon opens the

software.

Figure 4-6. BluePlant Icon

Project Management

Once BluePlant has started, the Project Management window appears.

On the center of the initial screen, in its top part, the user visualizes three tabs: “Projects”, “Server”

and “License”.

Figure 4-7. Project Management Window

Immediately the Web standard menu structure of BluePlant is shown. This design allows a more

efficient access to the tool set by reducing the number of clicks required to access them. It also shows

a table indicating the projects which can be accessed.

4. BluePlant

20

The "Projects" tab displays the icons used to create, open and find projects ("New Project", "Open

Project…" and "Find Project ..."). These icons are not placed in the default BluePlant directory.

The "Server" tab, shown on Figure 4-8, presents two options: Localhost and Remote. The first one

means that the project will run locally and the latter that the project will run from a remote server.

Figure 4-8. Server Tab

The third tab shown on Figure 4-9 refers to the product license, including the model, product version,

family, serial number, and product code among other informations available in the hardkey.

Figure 4-9. License Tab

4. BluePlant

21

Getting Started with BluePlant

This section presents a sequence of operations for creating a simple project or opening an existing

one. Along with the tool, it is provided a demo which allows a simplified view of the BluePlant

available resources. The details of the referred features will be explored throughout this manual.

Selecting the Demo Project

From the tab "Projects ...", in the project editor, the demo project (Demo.tproj) can be selected, which

includes an overview of the BluePlant features and resources.

To open the project, the user must select the project available in the list and click "Open Project".

Creating a New Project

The basic settings of the project to be created are defined from the BluePlant opening window by

clicking on "New Project ...", as shown on Figure 4-7.

The next window, shown in Figure 4-10, indicates the steps to create a new project.

Figure 4-10. Creating a New Project

1. New project indication

2. Definition of the project name, description and directory where the project will be generated

3. Initial settings such as: family and product model, platform, culture and standard code (script)

4. Screen resolution settings

5. Button to create a new project and start the application development

The new project created is referenced in the list of the BluePlant opening window.

User Interface

The user interface configuration operates as a front-end Web page where the user can easily browse

between items and edit them. The data are saved automatically on the back end, without having to

open/save/close the menus. On the left, the user interface displays the main menu on top and the

submenu right below, which will change according to the user's selection in the main menu. The right

4. BluePlant

22

part shows the desktop tabs, and at the top, the user can view a bar of quick links and the recent

items. Figure 4-11 illustrates the user interface.

Figure 4-11. User Interface

Creating Tags in the Project

In the editing environment the user can edit objects such as tags. Figure 4-12 shows the way for

editing them. In this example, two analog tags have been created: the gross value of an electric

power meter to be read from the programmable controller called Power_PV and the engineering

value of this measurement called Power_ENG.

4. BluePlant

23

Figure 4-12. Editing Tags in the Project

The steps for creating these tags are numbered in the preceding figure and are described below:

1. Access the Edit menu

2. Select the Tags option

3. Access the Objects tab where will appear the table with the user tags

4. Enter the data related to the new application tag in the row labeled with an asterisk (*). Confirm

the insertion in the table by clicking the Enter key

5. Choose the tags configuration options through the desired columns of the table by clicking with

the right button of the mouse in the header of a column and marking the items for exhibition

It is also possible to create a new tag through the toolbar at the top of the edition environment. The

user should click the icon and set the tag parameters.

Figure 4-13 shows the creation process of a unidimensional array tag with three positions of analog

integer type from the Edit Menu. An array tag comprises a set of tags with the same name, whose

IDs are given through indexes. In this example, the syntax to access the tag is: TT[0] TT[1], TT[2]

and TT[3].

4. BluePlant

24

Figure 4-13. Tag Creation Process

Associating Tags to a Communication Protocol

To relate a communication protocol with the created tags, the following steps must be performed.

Figure 4-14. Communication Channel Creation Process

1. Access the Edit menu

2. Select the Devices option

3. Access the Channels tab on which should appear the field with the available protocols

4. Select in the field Installed Protocols the communication protocol to be used

5. Click on the button “Create new...” to confirm the creation of the channel

After the protocol selection and channel creation, a window with the properties of the protocol should

appear, as can be seen in Figure 4-15.

4. BluePlant

25

Figure 4-15. Protocol Options for Channel Creation

On the Nodes tab (figure below) the nodes are created according to the existing channels. For more

details on how to create and configure nodes, see Editing Devices chapter.

Figure 4-16. Inclusion and Nodes Setting

The Points tab (figure below) allows to create an association between tags, nodes and the protocol

addresses, as well as access type settings, ranges and data types.

Figure 4-17. Association of Tags with Nodes and Protocol Addresses

As shown in Figure 4-18, by selecting the TagName field (in the Point tab), it is displayed a window

listing all the created tags. Then, the selected tag can be associated to the created node.

4. BluePlant

26

Figure 4-18. Selecting the Tag for Node Association

 Including Objects in the Main Screen

The Draw menu allows to create the application screens. The screens are made up of objects, such as

symbols and texts.

Let's explore the inclusion of these two types of objects in the default main screen.

Adding Symbols

To add a tachometer symbol type on the main screen (MainPage), the following steps should be

considered:

1. Select the Draw menu

2. Access the Drawing tab

3. Open the Symbol Library

4. Select the symbol (the tachometer, in this example), placing it at the desired location

5. Configure the symbol properties

These steps are referenced in Figure 4-19, with the correspondent numeration.

4. BluePlant

27

Figure 4-19. Add a Tachometer Symbol Type

To associate a tag to the symbol, the following steps should be considered:

1. Click with the right mouse button on the symbol

2. Select the option Symbol links

Figure 4-20 shows these steps to tag association.

4. BluePlant

28

Figure 4-20. Association of Tag to a Symbol

In the next window (Figure 4-21) the user can configure the tag and its parameters as described in the

following steps:

1. Configure the symbol properties (Label and Max/Min values)

2. Associate a tag to the symbol in RotateValue field.

In this example it was used the client tag "SimulationAnalog" to simulate the motion of the meter

pointer.

Figure 4-21. Configuration of the Tag Associated to the Symbol

4. BluePlant

29

Adding Text

To add a text on the screen (MainPage), the following steps should be considered:

Select the Text Output option:

1. Define the text location

2. Set the text properties

The Figure 4-22 illustrates this sequence.

Figure 4-22. Adding Text

Running a Project

The Run environment provides access to all execution resources of the Project.

The following modules are available and are explored in this section: Build, Test, Startup and

Publish.

In addition, this menu includes the following tools: UseCount, Localization and Extensions, which

will be explored throughout this manual.

Project Build

The compilation checks the project against errors and optimizes the system aiming a fast and

efficient operation. The time required to compile a project depends on its size and on the processing

capacity of the computer. To build the project the following steps serve as guidance:

1. Select the Run menu

2. Select the Build option

3. Access the Messages tab

4. Press the Build button

5. Confirm the build selection

4. BluePlant

30

Figure 4-23 illustrates the project building process.

Figure 4-23. Project Building

Figure 4-24 shows the Build progress window.

Figure 4-24. Build Progress Window

Figure 4-25 illustrates the result of compilation and errors, if any.

Figure 4-25. Build Result

4. BluePlant

31

Project Test

Figure 4-26 shows the steps described to test the project.

Figure 4-26. Project Test

1. Select the Run menu

2. Select the Test option, which runs the project into test mode. The user can configure the test,

diagnostic tools and modules to be tested

3. Start the test with the configured settings via Run Test button

Figure 4-27 shows the project test result.

Figure 4-27. Running Project Test

To end the project test, the user can open the File menu and select the Shutdown option, as shown in

Figure 4-27.

4. BluePlant

32

Project Startup

Figure 4-28 shows the sequence to launch the project (run startup).

Figure 4-28. Project Startup

1. Select the Run menu

2. Select the Startup option, which allows the user to configure the startup, diagnostic tools and

modules to be initialized

3. Start the project execution with the configured settings via Run Startup button

Along with the project main screen, a window will be opened showing the status and startup

messages as can be seen in Figure 4-29.

Figure 4-29. Project Startup Status

4. BluePlant

33

Project Publication

When the project is ready to be executed in field, the publishing feature must be used to configure the

redundancy options (if applicable) and to create a copy of the project in read-only mode with

controlled version, i.e. a copy of the project to run in the field. The extension of the generated file on

the occasion of the publication is "teng". Figure 4-30 shows the project publication sequence.

Figure 4-30. Project Publication

1. Select the Run menu

2. Access the Publish option, which allows to access the settings of the project publication

3. Click the Publish button, which triggers the project publication with the configured settings

4. Confirmation window for the project publication

After the publication, a similar window to the one shown in Figure 4-31 appears indicating the path

of the published project.

Figure 4-31. Path of the Published Project

5. BluePlant Main Menu

34

5. BluePlant Main Menu

Each supervisory system manages a certain number of objects (also called entities) that describe the

controlled process variables and the usual control elements. The configuration of a supervisory

usually comprises two steps:

 Define each process variable in the database

 Define synoptic, graphics and reports

In the system there are simple, primitive and composed variables, the latter formed from the first. In

this context the variable name is called Tag.

In this chapter are described the four basic BluePlant menus: Edit, Draw, Run and Info, which

contain the necessary tools for the development of a supervisory system project comprising the

typical steps previously listed. These four menus are described in the sections Application Editing,

Application Diagramming, Application Execution and Application Information respectively.

Application Editing

The Edit menu allows the user to access the tools for editing a project in BluePlant. Figure 5-1 shows

the menu selection.

Figure 5-1. Edit Menu

The items that comprise the Edit menu are numbered in the preceding figure and are described

below:

1. Selection bar of the Project Editing menu

2. Edit menu toolbar, containing the configuration resources for the following elements: tags, users

and their security policies, devices and their communication protocols, alarms, database, script

language, displays and reports

3. Shortcuts on top toolbar, including the definitions to create a new tag, its properties and users

configurations as well as his access to the application elements

5. BluePlant Main Menu

35

Application Diagramming

In the Draw menu is possible to create the screens and symbols that make up the application. Figure

5-2 illustrates the inclusion of symbols on the main screen (MainPage) with the help of the toolbars

associated.

Figure 5-2. Draw Menu

The items that comprise the Draw menu are numbered in the preceding figure and are described

below:

1. Selection bar of the Project Drawing menu

2. Vertical toolbar used to include, manipulate and configure the elements that will compose the

application screens

3. Horizontal toolbar located below the screen tab, which presents some commands to group,

combine, align, lock the selected component(s), etc.

4. TopToolBar located on the top part of the Draw Menu main screen, which have icons with the

following functions: create new display(s), delete display(s), save display(s) and view the already

existing display(s) in the project

Application Execution

The Run menu provides access to all project execution features. The following menu items are

available in the Run environment: Build, Test, Startup, Publish and Tools. Figure 5-3 illustrates the

menu.

5. BluePlant Main Menu

36

Figure 5-3. Run Menu

The items that comprise the Run menu are numbered in the preceding figure and are described

below:

1. Selection bar of the Project Execution menu

2. Project execution features

o Build command, which prepares a project for implementation and save it in the Project Build

History. It is divided into Messages Compilation (displays status, errors, location and module

informations) and Historical Compilation (displays compilation, errors, execution date and

users informations)

o Test command, including the settings associated with the project test

o Startup command to initialize the project settings

o Publish command that allows the user to access the project publication settings

3. Tools module, including the counting tags and objects functionalities via "UseCount" and

"CrossReference" commands, translation settings at Runtime (Localization) and execution tools

as well as Add-ons (Extensions)

Application Information

The Info environment provides access to the current project information. Figure 5-4 illustrates the

menu.

5. BluePlant Main Menu

37

Figure 5-4. Info Menu

The items that comprise the Info menu are numbered in the preceding figure and are described

below:

1. Selection bar of the Project Information menu

2. Application information, divided in Project (project settings), Track (tracking of changes) and

Notes (user notes)

3. Software information where the user can get information about the software license as well as

access the help tool

6. BluePlant Components

38

6. BluePlant Components

This chapter provides information about the configuration tools, runtime and BluePlant applications.

It goes according to the following structure:

 Configuration tools: menus Edit, Draw, Run and Info

 Runtime tools: applications tools, runtime objects and command lines

 BluePlant applications: displays in other operational systems and service on Windows

Edit Menu

The Edit environment provides access to all the required functionalities to configure the project. It

comprises the following items.

Functionality Graphical Representation

Tags Edition

Security Definitions

Devices Configuration

Alarms Planning

Datasets

Script Language

Displays Project

Report Configuration

Table 6-1. Edit Menu Functionalities

The following sections detail the functionalities.

Editing Tags

The Edit Tags menu configures the tags database in real time.

Edit Tag Objects

Use the tags (and their pre-defined properties) included in the table below to configure a realtime

database. Through the EditTagsUserTypes table, the available types can be extended, and new types

can be created as well.

Note:

6. BluePlant Components

39

The term "Tag" in the context of a Project configuration refers to a process variable. Figure 6-1

illustrates the edition of Tags Objects.

Figure 6-1. Edition of Tag Objects

The Edit menu items numbered on the previous figure are listed below:

1. Select the Objects tab

2. Enter the new application Tag data on the row labeled with an asterisk (*)

3. Choose the tag settings by clickcing with the right button of the mouse in the header of a column

and marking items for exhibition

As shown on Figure 6-1, each item is detailed below.

Name

This field defines the tag name. In this column it is possible to create or edit tags.

Type

This field sets the type of the tag. Available tags:

Type Description

Digital True or False

AnalogInt Integer

AnalogDecimal Decimal

AnalogDouble Floating point

Text Text

Timer Time

Counter Count

Reference Reference object pointing to another object

DateTime Date and time

UserTypes User defined types

Table 6-2. Available Tags Types

6. BluePlant Components

40

Note:

Regarding the Reference type, a reference object must be initialized to point to another object. This is

typically accomplished using the following syntax in a script body:

@Tag.Reference1.Link = @Tag.TagName.GetName(); (VB)

@Tag.Reference1.Link = @Tag.TagName.GetName(); (C#)

Parameters

This field defines the tag parameters according to the type: Deadband for Analog tags and settings for

Timer and Counter tag types. When creating "Reference Tags" (or POINTERS) define the target

reference tag in the "Reference Type" column.

Min

This field sets the minimum value acceptable for the tag.

Max

This field sets the maximum value acceptable for the tag.

Eng Units

This field defines the base Engineering Unit for the tag.

Format

This field specifies the display value format. For valid numeric formats, refer to Standard Numeric

Format Strings. Ex: N1 (number with 1 decimal place). For valid date and time formats, refer to

Standard Date and Time Format Strings. Example: d (short date). For a more in-depth discussion of

format strings, refer to Formatting Types. Numeric formats example:

Specifier Description

N0 Number with no decimal places

N3 Number with 3 decimal places

X Hexadecimal (supported only for integral types)

C Currency

Table 6-3. Example of Numeric Formats

http://msdn.microsoft.com/en-us/library/dwhawy9k(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/dwhawy9k(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/az4se3k1(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/fbxft59x(v=VS.90).aspx

6. BluePlant Components

41

Examples of DateTime formats:

Specifier Description

T (only) Long time pattern (equivalent to "HH:mm:ss")

d (only) Short date pattern (equivalent to "M/d/yyyy") (month / day / year) (US)

dd Represents the day of the month as a number from 01 through 31

ddd Represents the abbreviated name of the day of the week

dddd Represents the full name of the day of the week

MM Represents the month as a number from 01 through 12

MMM Represents the abbreviated name of the month

yy Represents the year as a two-digit number

yyyy Represents the year as a four-digit number

hh Represents the hour as a number from 01 through 12

HH Represents the hour as a number from 00 through 23

mm Represents the minutes as a number from 00 through 59

ss Represents the seconds as a number from 00 through 59

fff Represents the milliseconds as a number from 000 through 999

tt Represents the A.M./P.M. designator

Table 6-4. Example of DateTime Formats

Example: long time pattern

Format = HH:mm:ss (hour; minute; second)

Visibility

This field defines the tag value visibility on the OPC server for remote Projects. The following

configuration options are available:

 Private: defines a Tag visible only to local project and redundant pair

 Protected: defines a Read-only Tag visible on the OPC DA server to remote Projects and OPC

DA clients

 Public: defines a Tag visible on the OPC DA server to remote projects and OPC DA clients

Domain

The domain defines the tag value for the entire project or a specific value to each client display. The

following configuration options are available:

 Server: the Tag value is consisted across the entire project and all clients

 Client: the Tag value is local to each remote computer running a client display (Web or display)

Note:

Client Tags should not be used in server modules like Device, Alarm, Historian and ServerScripts

because its value is local (restrict to the running computer) and is not propagated to remote clients.

Most tags in a project are defined as "Server". tags" "Local" allow different values on each client

computer. However, it is possible to use "Local" tags in specific temporary data to individual client

computers. The most common situation for using "Local" tags is when temporary data are needed to

manage the User Interface on the displays. “Local” tags allow different values in each client

computer.

Array

When not defined (blank) the tag is not an Array. When defining an array with value N an array is

created from position 0 to N. For example, when creating a Tag array of size "5", the Array is created

6. BluePlant Components

42

from Tag[0] to Tag[5], this means that 6 elements are created. Two programming styles are

accommodated by this method: the indexing from 0 and the counting from 1.

Note:

Regarding the array extensibility by account levels, the Express and Lite versions are limited to one

dimension array. The Enterprise version can create arrays with up to 3 dimensions.

Example 1

Name field: TagAnalog

Array field: 2

Creates 3 elements: TagAnalog[0] TagAnalog[1] TagAnalog[2]

Syntax to access:

C#: TagAnalog[1]

VB.NET: TagAnalog(1)

Example 2

Name field: Temp

Array field: 1,2

Creates 6 elements: Temp[0][0] Temp[0][1] Temp[0][2] Temp[1][0] Temp[1][1] Temp[1][2]

Syntax to access:

C#: Temp[1,2]

VB.NET: Temp(1,2)

Startup Value

This field sets the Tag startup value. When left blank no startup value is applied.

Retentive

The Retentive column specifies if the Tag properties are retained when shutting down the application

and used as startup values on next execution. The following configuration options are available:

 Non-Retentive: Tag value is not save

 ValueOnly: Tag value is saved when modified and can be used as startup value on next execution

 Properties: all Tag properties are saved when modified to be used on next startup

Note:

In the edition process the ENTER key must be pressed in the table cell, in order to confirm the

accomplished configurations.

Edition of User Defined Types

An existing type tag can be localized in the "User Custom Type" field.

Click to delete any existing Struct Type Tag and to create a new Struct Type Tag.

A UserType Tag can be used in the same manner as the built-in Tags.

Note:

Express and Lite versions allow UserTypes to be used only on the main TagsObjects list. Enterprise

version allows creating up to four levels of UserTypes.

Example: When creating a PID UserType with 'setpoint' and 'PV' members, it is possible to create a

Tag named 'loop' (PID type). The syntax to access its value is:

6. BluePlant Components

43

loop.setpoint and loop.PV

Figure 6-2 shows the edition of the defined types by user.

Figure 6-2. Templates Tag Edition

The Edit Type menu items numbered on the previous figure are described below:

1. Select Templates option

2. Select the User Custom Type option and click "New" or "Del" to create a new element or remove

it respectively (using the left button of the mouse)

3. Enter the data related to the new type on the row labeled with an asterisk (*)

4. Choose the desired configuration options of the Type column from the table, by clicking with the

right button of the mouse in the header of the column and marking the items for exhibition.

As shown on Figure 6-2, each item of the Template Edit Menu is detailed below.

Name

This field sets the element name. In this column is possible to create or edit user types.

6. BluePlant Components

44

Type

This field sets the tag type. The configuration options of the tag component type are:

Type Description

Digital True or False

AnalogInt Integer

AnalogDecimal Decimal

AnalogDouble Floating point

Text Text

Timer Time

Counter Count

Reference Reference object pointing to another reference object

DateTime Date and time

UserTypes User defined types

Table 6-5. Base DataType to Generate New Base DataType

Array

When not defined (blank) the tag is not an Array type. Defining an Array with value N, an Array is

created from position 0 to N. For example, when creating a tag Array of size 5, the Array is created

from tag[0] to tag[5], this means that 6 elements are created.

Lite and Express versions are limited to one dimension arrays. Enterprise version provides arrays up

to 3 dimensions.

Reference

This field sets reference type tags. It specifies the target type when a reference tag is created. A

reference tag during the Runtime can dynamically point to different tags according to the types

defined in this field.

Min/Max

This field sets the minimum and maximum values acceptable for the tag. The range must not be

smaller than Min value nor greater than Max value.

Eng Units

This field defines the base Engineering Units for the Tag.

Start Value

This field sets the tag startup value. When left blank no startup value is applied.

Retentive

This field specifies if Tag Properties are retained when shutting down the application and used as

startup values on next execution. The available options are:

 Non retentive: Tag Value is not save

 ValueOnly: Tag Value is saved when modified to be used as startup value on next execution

All Tag properties are saved when it is modified to be used on next startup.

6. BluePlant Components

45

When applying retentive properties, the modifications are saved in the database <project>.retentiv.

The use of Retentive settings for tags whose values change rapidly is not recommended,once that the

execution performance will be decreased. This is the case, for example, of the process variables that

are going to be considered critical and/or are associated to security conditions.

Historian Edit

It is possible to configure a Historian database to log Tags changes. To select an existing Historian

Table, search in the "Historian Tables" field.

Click to delete any existing Historian Table or click to define a new Historian Table.

Figure 6-3 shows the Historian Table settings.

Figure 6-3. Historian Table Settings

The database in which Tags are saved is defined on EditDatasetDBs at DB named "TagHistorian".

Figure 6 4 illustrates the settings which are related to the Tags Historian.

Figure 6-4. Historian Edit

6. BluePlant Components

46

The Edit Historian menu items shown on the previous figure are listed below:

1. Select the Historian tab, by clicking with the left button of the mouse

2. On Historian Tables field, click "New" or "Del" to create or remove the table element

respectively (using the left button of the mouse). The "Config" button provides access to the

historian table configurations shown on Figure 6-3

3. Enter the Tag data whose changes should be registered on the row labeled with an asterisk (*)

As shown on Figure 6-4, each Historian Edit Menu item is detailed below.

TagName

This column indicates the tag name and enables the user to insert or remove historian tags.

DeadBand

This column sets the Historian deadband. The saving event in the log is triggered only if Tag value is

changed to a value greater than the one of the DeadBand .

Examples:

Configured DeadBand 10. Current Value 20. All new values 10 (or more) greater than the prior value

are added to Historian Log.

Value changed to 35 (difference from previous value of 20:15). Result: Value added to Historian

Log.

Value changed to 50 (difference from previous value of 35: 15). Result: Value added to Historian

Log.

Value changed to 55 (difference from previous value of 50: 5). Result: Value is not added to

Historian Log.

Deviation

If SaveOnChange is set on the table settings and Tag undergoes a greater change than the Deviation

parameter (previous value and current > Deviation), the value will be immediately saved (no need to

wait for the next TimeSpan).

RateOfChange

If Tag RateOfChange (engineer units per second) is greater than the specified RateOfChange

parameter, and SaveOnChange is enabled, the table will be immediately saved (no need to wait for

the next TimeSpan).

HistorianTable

The HistorianTable tab defines the Database table where the "Historian" Tags are saved.

Click to edit Historian Table Settings as shown on Figure 6-3. The available configuration

options are:

 TableName: Database table name

 TimeSpan: Minimum time between records

 Trigger: The table is saved at each trigger change

 AutoCreate: Automatically creates a table when this is not found in the database

 LifeTime: When defined (greater than "0") deletes records older than lifetime

 User-defined description for documentation purposes

6. BluePlant Components

47

Binding Tags

It is possible to configure the binding data between tags or properties, so that when the data changes

its value, the elements associated with them change automatically. Data binding can also mean that if

there is a change in another representation of the data in an element, then the underlying data will

also be automatically updated. Figure 6-5 shows this selection.

Figure 6-5. Edit Binding Tags

The Edit Binding menu items numbered in the previous figure are listed below:

1. Select the Bindings tab, by clicking with left mouse button

2. Enter the Tag data on the row labeled with an asterisk (*)

As shown on Figure 6-5, each item of the Edit Binding menu is detailed below.

Name

This field specifies the tag name.

BindingMode

This field sets the binding mode with the following configuration options:

 OneTime (at the startup)

 OneWay (tagname changes when sourceproperty change)

 TwoWay (any change in tagname or in the sourceproperty changes the opposite filed)

 OneWayToSource (sourceproperty changes when tagname changes)

Source Property

This field sets the Data source property.

Editing Security Settings

The Edit Security menu defines the user permissions and the project access levels.

Users Edit

This tab defines the Project users and related permissions. The Administrator-level and Guest-level

IDs have built-in attributes. Some user permissions remain active regardless of renaming or changing

permissions as follows:

6. BluePlant Components

48

Administrator User (ID:2): The Administrator ID remains the same even if the user name or

permissions are changed. The Administrator is the only user who can delete or block users and the

only user who can define passwords for Database DB interfaces.

Guest User (ID:0): This ID is used for anonymous login users. Guest users do not have passwords

assigned to them. However, their permissions can be changed. When the system starts up with no

User(s) defined (or there is an anonymous login) the security permissions defined for the Guest user

are then applied.

Figure 6-6 shows the users profile edit, regarding the security scope.

Figure 6-6. Users Profile Edit

The steps for edit/include user profiles are highlighted on Figure 6-6 and described below:

1. Select Edit menu

2. Access Security item

3. Click on Users tab to access the system users

4. Enter the application users data on the row labeled with an asterisk (*)

5. Select the available permissions that the added user or in edition user may have in the system

ATTENTION:
It is possible to set a password and a password tip for each user.

Edit Permissions

This tab defines the settings and execution privileges to each permission group. Figure 6 7 illustrates

the selection.

6. BluePlant Components

49

Figure 6-7. Edit of Security Permissions

The highlighted options on Figure 6-7 should be followed in order to edit the permissions and are

described as follows:

1. Select Edit menu

2. Access Security item

3. Click on Permissions tab for access to the system permissions

4. Enter the user permissions data on the row labeled with an asterisk (*)

5. Set the Edit permissions on the Edit column

6. Set the Runtime permissions on the Run column

ATTENTION:
The Editing permissions configuration enables users configured with this permission to perform
certain types of modifications in the project. The Runtime permissions configurations enable users
configured with this permission to perform certain actions during the project execution.

Name

This column sets the permission group name.

Edit

This column defines the Edit and Draw Permission Groups privileges. Available options:

 Unrestricted

 EditTags

 Security

 Scripts

 Datasets

 Reports

 Publish

 Notes

 Historian

 Alarms

6. BluePlant Components

50

 Devices

 Displays

 Startup

 Settings

 CreateTags

Run

This column defines the Permission Groups Execution (Runtime) privileges. Available options:

 Unrestricted

 Test

 Startup

 Shutdown

 ClientStart

 ClientShutdown

 StartTools

 ToolsSetValues

 CreateUsers

 SwitchApplication

 WebAccess

Editing Devices

BluePlant is provided with an OPC DA driver for gathering information from remote devices. In

addition to the OPC, BluePlant also supports custom communication drivers to directly access CPs,

I/O remote systems, standardized fieldbuses, single and multiple loops, scanners, barcode readers,

RFID devices and digital displays. See the Device support manual for more information about

Protocol and programming of each device.

ATTENTION:
For more information about device settings (channels, nodes and communication points) use the
Help button on the Channels tab.

Channels

This field configures the protocols and communication Channels. Figure 6 8 illustrates the selection.

Figure 6-8. Edit Communication Channels

6. BluePlant Components

51

The Edit Communication Channels menu items numbered in the previous figure are listed as follows:

1. Select the Channels option

2. Observe that installed protocols data are indicated on the row labeled with an arrow (►)

As shown on Figure 6-8, each item of the Edit Communication Channel menu is detailed below.

Name

This column sets he channel name.

Protocol

This column sets the communication protocol running on a specific channel.

ProtocolOptions

This column comprises the protocol specific configuration.

Interface

This column indicates the communication interface for the channel. The available interfaces depend

on the chosen protocol. Table 6-6 shows the available interfaces for each protocol.

Protocol Available Interfaces

Altus ALNET I Serial and Multiserial

Altus ALNET II TCP/IP

ControlLogix - Rockwell – Protocol CIP TCP/IP

Altus FBs - Facon Serial, Multiserial, and TCP/IP

MODBUS Master - TCP/IP e RS-232C Serial, Multiserial, and TCP/IP

MODBUS Slave - TCP/IP e RS-232C Serial and TCP/IP

OPCXmlDA - OPC Xml/DA Client OPC

Siemens –S7 Protocol TCP/IP

Table 6-6. Protocols and Interfaces

Settings

This column comprises the communication interface configuration settings. Each interface type

presents specific settings, such as communication port, speed, data bits, stop bits, parity and control

signs. A double click on the Settings cell allows access to the menu with the assigned settings

interface.

Timeout

This column defines the timeout settings for the communication interface.

Create a Communication Channel

The button is used to create a new channel, as indicated on Figure 6 9.

6. BluePlant Components

52

Figure 6-9. Edit of a New Communication Channel

The following items detail the step by step procedure to the creation of a new communication

channel. See Figure 6-9.

1. Select Protocol by clicking with the left button of the mouse

2. Select one among the available options. In this example: Altus ALNET II

3. Conclude the procedure by clicking Ok with the left button of the mouse

Nodes

In the computing context, a node is a point or network terminal where a message can be created,

received or transmitted. In the context of supervisory systems operating in network, the node can be

an active electronic device connected to a network and it is able to send, receive or transmit

information via a communication channel. Figure 6-10 shows the Edit nodes menu for a given

communication channel. This communication channel, as indicated previously, is associated with a

specific Protocol and can contain one or more nodes.

Figure 6-10. Edit Node for Communication Channel

The required steps to edit or include existing nodes are listed on Figure 6-10 and explained below:

1. Select Edit menu

2. Select Devices

3. Click on Nodes to access the node configurations

4. Include or edit the node name on the row labeled with an asterisk (*)

6. BluePlant Components

53

5. Select Channel (protocol) previously added to the project

6. Indicate, in the PrimaryStation column, the equipment address that will be associated to the node

Name

This column indicates the node name.

Channel

This column informs the communication channel associated with this node.

Primary Station

The Primary Station column refers to the node station. It defines the IP Address, Port e SlaveID. The

station field syntax is dependent on the protocol. Next figure shows an example of a parameterization

(ALNET protocol).

Figure 6-11. Primary Station Parameterization

Backup Station

The Backup Station column defines IP Address, Port number and SlaveID. When defined, and a

communication failure occurs on the primary station, the system automatically attempts to establish

communication with the backup station.

Points

This tab sets the data acquisition values of the field devices and maps the values in the tags.

6. BluePlant Components

54

Figure 6-12. Edit Points

The required steps to edit or include communication points are listed on Figure 6-12 and described as

follows:

1. Select Edit menu

2. Select Devices item

3. Click on Points tab to access the communication points configurations

4. Include or edit the tag name (selectable) on the row labeled with an asterisk (*)

5. Select the node (configured device) previously added to the project

6. Inform in the Address column the data address of the specified equipment that may be received

or sent

Name

The Name column defines the TagName value to be read or written on the identified device.

Nodes

This column defines the Communication Node associated with the Device Point.

Address

This column indicates the Device Point Address. The address field syntax depends on the protocol.

Figure 6-13 shows an example of address parameterization (operand) in the ALNET protocol case.

Figure 6-13. Example of Address Parameterization

6. BluePlant Components

55

Date Type

The Data Type column defines the data conversion applied to communication data. Most protocols

should use the NATIVE option. When NATIVE is used the protocol will automatically handle the

data conversion. If a DataType different than NATIVE is selected, the default protocols are

overwritten. The possible DataTypes are:

 Native (automatic)

 Bit (binary – 1 bit)

 Byte (octet – 8 bits)

 Char (smallest addressable unit of the machine that can contain basic characters – 8 bits)

 Short (integer number with signal - 16 bits)

 Dword (integer number – 16 bits)

 Integer (number without decimal point)

 Long (integer number with signal – 32 bits)

 ULong (integer number without signal – 32 bits)

 BCD (decimal number encoded as binary)

 LBCD (Long BCD)

 Single (single floating point number)

 Real (real number – floating point)

 ASCII (7-bit characters code based on English alphabet)

 Unicode (text representation and manipulation)

 OPCDateTime (standard OPC date and time)

 Timer (time code)

 Counter (count code)

 Control (control data type)

Modifiers

The Modifiers column provides bit selection and other communication data settings, changes may

happen according to the protocol. The following fields can be defined:

 Bit

 ByteSwap

 WordSwap

 Stringlength

AccessType

The AccessType column defines the Read and Write behavior for each Point.

Scaling

This field sets the scaling conversion applied using the communication data. Scaling conversions

settings are:

 None

 TagMinMax

 Liner

 Equation

Figure 6-14 shows the scaling conversion parameterization based on TagMinMax option.

6. BluePlant Components

56

Figure 6-14. Scaling Conversion

Access Type

This tab defines the access type characteristics that are common to the Device Points. Figure 6-15

shows the three types of default access types:

 ReadWrite

 Write

 Read (read only)

Figure 6-15. Access Types

Click to create a new AccessType.

6. BluePlant Components

57

Figure 6-16. Access Type

As shown on Figure 6-16, the main items of the AccessType menu are detailed below.

Name

This field indicates the AccessType name.

ReadPooling

This field defines the read by pooling. Assigned attributes:

 Checked = always = read by pooling on

 Unchecked = never= read by pooling off

PoolingRate

This field defines the read pooling rate for each AccessType if ReadPooling is checked.

OnStartup

This field defines the reading point on startup. Assigned attributes:

 Checked = true = Enables reading on startup

 Unchecked = false = Disables reading on startup

WriteEnable

This field enables or disables the writing when an event occurs. Assigned attributes:

 Checked = true = Enables writing

 Unchecked = false = Disables writing

WriteEvent

This field sets the type of writing access to a point. Assigned attributes:

 Changed - Writes when the linked tag is changed

 ChangedUp - Writes when the value of the linked tag is increased

 ChangedDown - Writes when the value of the linked tag is decreased

mk:@MSITStore:C:/Users/Philden/SkyDrive/Azzet/Técnico/MU_BluePlant_ENG/HELP_BluePlant_inglês.chm::/_2u90acx1f.htm

6. BluePlant Components

58

AcceptUnsolicited

Defines the acceptance attributes of an unsolicited message. Assigned attributes:

 Checked - Enables unsolicited message

 Unchecked - Disables unsolicited message

Editing Alarms

An alarm can be configured through the association of a Tag with a specific Alarms group and a

threshold value.

To display a previously configured Alarm item draw an alarm object on the Draw environment and

insert the symbol (Alarm Window) through the left toolbar.

The methods for Alarms recognition include alarm objects on the screen, Tag properties, alarm

groups or alarm properties, as well as the fields "AckAll" (global) and "AckMostPriority".

Notes:

Recognize all alarms: use the property <Alarm.AckAll> that recognizes all the configured alarms in

a Project with <Edit.Alarms.Items>.

Recognize single alarm or high-priority alarm: the property {Alarm.PriorityItem.UnAck} allows

the recognition of the high priority alarm configured on <Edit.Alarms.Items> in the "Priority"

column. If this is the only alarm or if this is a high priority one, it will be recognized, as long as it is

Active or Normalized.

Recognize specific alarm: use the property <Alarm.Items.IDxx.Unack>to recognize a specific

alarm.

Alarm Groups

The Alarm Groups define the alarm handling behavior which is common to a Group of Alarms.

Figure 6-17. Alarm Groups

Figure 6-17 shows the required steps to edit or include the alarm groups. The following procedure

should be performed.

1. Select Edit menu

2. Select Alarms

3. Click on Groups to access the alarm groups configurations

4. Include or edit the alarm group name on the row marked with an asterisk (*)

5. Select the group configuration specified on the columns presented on the figure above

6. BluePlant Components

59

Name

The field indicates the name defined by the user for the Alarm group. The Alarm Groups "Warning",

"Critical" and "SystemEvents" are built-in and cannot be deleted, however their names and settings

can be changed.

AckRequired

The field sets the acknowledge options for the Alarm group. Assigned attributes:

 No = 0 - The alarm points set in the group do not require acknowledgement

 Yes = 1 - The alarms set in the group require acknowledgement

Sound

The field enables or disables the Alarm Sounds when there are active Alarms in Group. Assigned

attributes:

 None = 0: No sound

 Beep = 1: A regular beep will be played at each client computer while there are alarms without

acknowledgement

Show

The field configures to display/not display the Alarm (includes display on the online Alarms object).

6. BluePlant Components

60

Log Events

The field defines the type of Historian archiving on Alarm events. Assigned attributes:

 None

 Active (log when the event is active)

 ActiveAck (log when the event is active and recognized)

 ActiveNorm (log when the event returns to the normal state)

 All (log in all conditions above)

Note:

The database in which the Tags are saved is defined on EditDatasetDBs at DB named

"AlarmHistorian ".

Colors

The field defines the Alarm display customization for each Alarm line according to its main Group.

Alarm Items

The field configures Tags to generate Alarms under defined conditions.

Figure 6-18. Alarm Items

Figure 6 18. shows the required steps to edit or include the alarm groups. The following procedure

should be performed:

1. Select Edit menu

2. Select Alarms

3. Click on Items to access the alarms configurations

4. Include or edit the tag name which generates the alarm on the row labeled with an asterisk (*)

5. Select the alarm generation condition

6. Set the limit which triggers the alarm

7. Select the previously created group with its alarm features

8. Insert the message to be displayed in case of alarm trigger

Name

This column defines the TagName which will be evaluated to generate the Alarm.

6. BluePlant Components

61

Condition

This column refers to the evaluation condition to generate alarms. Options:

 Hi: Tag >= limit

 HiHi: Tag >= limit (when acknowledged automatically, acknowledges Hi alarm to the same Tag)

 Lo: Tag <= limit

 LoLo: Tag <= limit (when acknowledged automatically, acknowledges Lo alarm to the same

Tag)

 RateOfChange: Tag rate of change >= limit

 DeviationMinor: Absolute value (Tag - Setpoint) > limit (Setpoint defined on the Setpoint

column)

 DeviationMajor: Absolute value (Tag - Setpoint) > limit (Setpoint defined on the Setpoint

column)

 Equal: Tag = limit

 GreaterThan: Tag > limit

 GreaterEqual: Tag >= limit

 LessThan: Tag < limit

 LessEqual: Tag <= limit

 Changed: Tag value changed

 ChangedUp: Tag value increased

 ChangedDown: Tag value decreased

Limit

This column defines the Value to evaluate the Alarm conditions.

Group

This column defines the Group name on EditAlarmGroups where the behavior of the Alarm item is

specified. The pre-defined groups are:

 Critical (Critical Messages that require acknowledgment)

 SystemEvent (System Events log)

 Warning (Warning messages that do not require acknowledgment)

Priority

This column defines the Alarm priority. "0" is the highest priority.

Message

This column defines a Message to display when Alarm occurs. Message fields can contain Tag

values evaluated when generating the Alarm. Add the TagName in the message using the XAML

binding notation between curly brackets as illustrated below:

TagValue = {TagName.Value}.

Editing Databases

As mentioned previously, the Datasets module included in BluePlant provides an easy operation

interface for real-time data exchange with external databases, XML, CSV or text files, as well as the

possibility to access tables and SQL queries. The real-time database ensures data synchronization

across multiple processes on the server as well as multiple client stations, without the need of

additional programming. A wide range of internal properties, such as data quality, time stamp, block

state and blocked value simplify the applications creation.

6. BluePlant Components

62

DBs

The DBs tab allows to access the Database configurations. Click to select the

database provider and create a new connection.

Name

This field sets the name for the DB Object.

Provider

This field selects the provider to the DB when creating a new database connection. The default

Providers are:

 Odbc Data Provider - Allows the access to an ODBC database through a native ODBC driver

 OleDb DataProvider - Provides applications to access the stored data in several information

sources

 SqlClient Data Provider - It is a collection of classes that can be used to access SQL Server

databases

 Microsoft SQL Server Compact Data Provider - Provides access to the Microsoft SQL Server

Compact databases

 TatsoftDB 4 direct connection – Allows the access to the TatsoftDB 4 database

Additional Providers can be created by adding XML templates to the product in the "DBProviders"

folder, that is located in the installation folder of the BluePlant software. Examples of data providers:

 OdbcDataProvider

 Firebird database

 Microsoft Access Database

 Microsoft Excel Database

 ODBC using DSN

 ODBC using fileDSN

 Oracle Database

 SQL Server Database

Database

This field selects the Database when creating the DB object. The list of available databases is

dynamically created based on Providers found in the "DBProvider" subfolder which is located at the

installation folder of BluePlant software. The most common databases:

 Microsoft Access Database

 Microsoft Excel Database

 ODBC DSN

 ODBC FILEDSN

 SQL Server Database

Connectionstring

This field defines the Connection string used to connect with database. Type the database source path

where the database file is located. Click to test if the Date Source is located and valid.

NameLogon

This field defines the Logon Name to connect with the database.

6. BluePlant Components

63

Password

This field refers to the required Password to connect with the database. This field can be edited only

by the Administrator user (user ID: 2).

Excel Connection

This field connects to Excel databases using an ODBC, an ODBC DSN, or OleDB driver. For an

ODBC connection, the following steps must be performed:

1. Select and name a required area in the spreadsheet. This allows BluePlant to read the information

as a table

2. Choose one of the following naming processes for your version of Microsoft Excel

For Microsoft Office 2007: Right-click the selection and then choose "Name a Range". Figure 6-19

illustrates this option.

Figure 6-19. Connection with Excel 2007

For Microsoft Office 2003: In Microsoft Excel go to "Insert > Name > Define …". Figure 6-20

illustrates this option.

Figure 6-20. Connection with Excel 2003

Name the selection (e.g., "itemsTable"). The Excel file is now ready for use.

6. BluePlant Components

64

Figure 6-21. Configuration of the Connection with Provider Excel 2003

The required steps to create a new connection with the database are numbered on Figure 6-21 and

listed below:

1. Select Edit menu

2. Select Datasets

3. Click DBs to access the connections created with database

4. Select Create new to create a new connection with Excel 2003

5. The Connectionstring is the place to configure the connection and test with the database. Figure

6-23 illustrates the procedure

Figure 6-22. Create a New Connection with Database

6. BluePlant Components

65

Figure 6-23. Connection with Database Test

If the database is an ODBC DSN one, proceed as follows:

In the computer control panel select "Administrative Tools" and double click "Data Sources

(ODBC)", as shown on Figure 6-24. If the operational system is 64 bits Windows, the access is via

C:\Windows\SysWOW64\odbccad32.exe file.

Figure 6-24. ODBC with DSN

6. BluePlant Components

66

Figure 6-25. "ODBC Data Source Administrator"

In the "ODBC Data Source Administrator" window click "Add". You are prompted to select a driver.

Select the "Microsoft Excel Driver (*.xls)" and Figure 6-26 will show up.

Figure 6-26. Database Configuration

Click "Select Workbook" then select the name of the Excel file created previously (e.g.,

"excelDatasource"). For Write access uncheck the "ReadOnly" checkbox.

In the Datasets namespace, choose "DBs" tab and create a new Provider on the correspondent option.

Under "Odbc Data Provider" options, choose "ODBC using DSN" then click Ok. On the

ConnectionString column of the new row, enter with the DSN in the "DSN" field and click in the

button “Test” to verify the connection with Excel.

6. BluePlant Components

67

Figure 6-27. ODBC Database Connection Test

To connect the OLEDB provider with Excel, the steps bellow must be followed:

In BluePlant Datasets namespace, choose "DBs" tab and select the option "OleDb data provider".

Then create a new Provider by clicking the corresponding option.

Choose "Microsoft Excel Database" and then click Ok. Click the ConnectionString column of the

new inserted Provider, then enter the path and the name of the Excel (.xls) file in the "DataSource"

field as shown on Figure 6-28.

Figure 6-28. OLEDB Database Connection Test

Connection with Oracle Database

The Oracle.DataAccess.Client provider used on the example of the Connection with Oracle Database

is available for free download at:

http://www.oracle.com/technology/software/tech/windows/odpnet/index.html

To create a new connection with the Oracle database click on and select the

installed provider as shown on Figure 6-29.

6. BluePlant Components

68

Figure 6-29. Insert Oracle Provider

Enter the user and database password to assure the connection. In order to do that use the

LogonName and Logon Password which were previously registered in the database.

Figure 6-30. User and Password to Connection with Oracle Database

In ConnectionString, enter the IP address, port and bank SID to establish the connection, as shown on

Figure 6-31.

Figure 6-31. Oracle Database IP Address, Port and SID

Check if the connection with the Oracle Database is working by clicking on "Test" and a similar

result to the one of the Figure 6-32 must appear.

6. BluePlant Components

69

Figure 6-32. Connection with Oracle Database Test

ATTENTION:
The provider used on the example above, requires Oracle clients (version 9.2 or previous). Oracle
Provider that comes with BluePlant is the System.Data.OracleClient, and requires Oracle clients
(version 8.1.7 or later).

Connection with SQLServer Database

Figure 6-33. Insert SQLServer Provider

The required steps to create a new connection with a SQLServer database are numbered on Figure

6-33 and listed below:

1. Select Edit menu

2. Select Datasets

3. Click DBs to access the connections created with database

4. Click Create new… to create a new connection with SQLServer Database

5. Configure the database user and password in the columns LogonName and LogonPassword

6. The Connectionstring is the place to configure the connection and test with the SQLServer

database

Tables

This tab allows to access data tables from configured Databases (DBs). Figure 6 27 illustrates this

selection.

6. BluePlant Components

70

Figure 6-34. Edit Data Tables

The required steps to edit or include tables are shown on Figure 6-34 and described below:

1. Select Edit menu

2. Select Datasets

3. Click Tables tab to access the tables configurations

4. Type or edit the table name on the row labeled with an asterisk (*)

5. Select which connection with a previously created database will be used

6. Select which database table will communicate

7. Select which is the access permission to the database

8. On column Mapping configure the tags related with the database table columns

Name

This column indicates the Table name used on Runtime objects.

DB

This column indicates the name of DB (Database connection) where the DataTable belongs.

TableName

This column indicates the table name as it is in the database.

WhereCondition

The WhereCondition indicates the condition in which the SQL statement is executed.

Access

The Access defines the Security policy with allowed operations for this DataTable. Possible options:

 Read

 Insert

 ReadWrite

 Unrestricted

6. BluePlant Components

71

Mapping

This column maps the contents of the data table with Tag objects. When executing Select and Next

commands the first row in the selected result is applied to the Tags. Then, when executing an Update

command the contents of the Tag are written to the row.

Queries

This tab maps the configured databases (DBs) as shown on Figure 6-35.

Figure 6-35. Edit Queries

The required steps to edit or include SQL(queries) instructions shown on Figure 6-35 are listed

below:

1. Select Edit menu

2. Select Datasets

3. Click Queries to access configuration of the SQL instructions

4. Enter or edit the name of the instruction on the row labeled with an asterisk (*)

5. Select which connection with the previously created database will be used

6. Configure the SQL instruction on the SqlStatement column

7. On column Mapping configure the tags related with the database table columns

Name

This column refers to the name of the Query object used on Runtime objects.

DB

This column refers to the name of the Dababase connection (DB) used for the storage of queries.

SQLStatement

This column refers to the SQL statement used to consult database.

6. BluePlant Components

72

Mapping

This column maps the contents of the data table in Tags. When executing Select command, the first

row in the result is applied to the Tags.

Files

This tab defines the files to the information exchange with the databases, as shown on Figure 6-36.

Figure 6-36. Database File Editing

The items that comprise the Database Edit menu are numbered in the preceding figure and are

described below:

1. Select the Files tab, then click with the left button of the mouse

2. Right-click on the column header to view the available items

3. The data related to the files will show up on the table rows

The edit items of the database files are described below, according to the illustration on Figure 6-36.

Name

This column defines the file name used on Runtime objects.

FileName

This column refers to the file name and path. Example: C:\BDs\file1.txt.

FileType

This column features the file types. Possible options:

 ASCII (7-bit characters code based on English alphabet)

 Unicode (text representation and manipulation)

 XML (standard OPC date and time)

Objects

This column maps the contents of the File with Tag objects.

6. BluePlant Components

73

Editing Scripts

The Script is executed either when the Trigger event occurs, or cyclically, on every interval set on the

Interval column. The options that comprise the Edit Scripts menu are detailed below:

Tasks

The Figure 6-37 emphasizes the Tasks tab for edition of script tasks.There are four built-in tasks:

 ServerStartup – script executed when the Project starts running. Runs on the Server machine

(TServer.exe)

 ServerShutdown - script executed when running shutdown. Runs on the Server machine

 ClientStartup - script executed on each client machine when the TVisualizer.exe (Displays

module) starts running

 ClientShutdown - script executed on each client machine when the Display module is closed

Figure 6-37. Edit Script Tasks

The items that comprise the Script Tasks Edit menu are numbered in the preceding figure and are

described below:

1. Select the Tasks tab

2. Select the configuration options of the desired columns from the table, right-clicking on the

column header and marking the desired items for exhibition

3. The script task data will show up in the table rows

The items of the script task edit men u are described below, according to the illustration on Figure

6-37.

Name

This field indicates the name for the Script object.

Code

This field defines the Script language. The user can choose VBdotNet or CSharp.

Trigger

This field refers to the Tag or Object that triggers the Task execution. The task is executed when the

value of the object changes.

6. BluePlant Components

74

Period

This field represents the period of time to execute a Task.

Domain

This field defines if the Script is executed on the Server station or on each Client station.

BuildStatus

This field shows the last compilation status: green indicates a successful compilation; red indicates an

error.

BuildErrors

This field shows the error count status from the last Script compilation. Assigned attributes:

ReadOnly.

Classes

This tab lists the User-defined classes via Methods library. Figure 6-38 shows it on the Script menu.

There are two built-in UserClasses:

 ServerMain: methods library available for all server and client tasks

 ClientMain: methods library available for all client scripts, including displays scripts

Figure 6-38. Script Classes

The items that comprise the Script Classes Edit menu are numbered in the preceding figure and are

described below:

1. Select the Classes tab

2. Select the configuration options of the desired columns from the table, right-clicking on the

column header and marking the items for exhibition

3. The data related to the script classes will show up in the table rows

The items of the script classes edit menu are described below, according to the illustration on Figure

6-38.

Name

This column indicates the name of the user class.

6. BluePlant Components

75

Code

This column indicates the Script language. The user can choose VBdotNet or CSharp.

Domain

This column defines if the methods in this user class will be visible to Server scripts or Client scripts.

CodeEditor

Figure 6-39 shows the panel of the task code and user class editor (Item 1). Available programming

languages: VBdotNet our CSharp. Figure 6-39 (Item 2) also shows the language selection.

Information on the syntax of the programming languages can be found at

http://www.microsoft.com/net.

Figure 6-39. CodeEditor

Using Script Tasks

Figure 6-40. Script Tasks

The required steps to edit or include a script task shown on Figure 6-40 are described below:

6. BluePlant Components

76

1. Select Edit menu

2. Access the Scripts

3. Click on Tasks to access the script tasks configured on the system

4. Enter or edit the task name on the row labeled with an asterisk (*)

5. Configure the trigger variable or period in which the script task will be executed, through the

columns Trigger or Period

6. Select the environment to execute the task (client or server)

Figure 6-41 presents the required steps to encode the script task using the method of an existing class.

Figure 6-41. Script Tasks CodeEditor

6. BluePlant Components

77

1. Click on the CodeEditor tab to access the encoding environment

2. Type the code in the proper place

3. Click the compilation icon

4. Check if there are errors on the encoded script

ATTENTION:
To use namespaces in the coding environment is required to type the character @ before the
namespace, otherwise it will be used as a local variable generating possible errors in the compilation.

Editing Displays

The Displays tab in the Edit menu allows the configuration of the module associated with the

displays. This module includes the repository of Displays, their modes of operation (Layouts) and

images (Resources).

Displays

This tab lists the project displays. The visualization of the display list can either be on table or card

format. The Card View/Table View selector allows to switch the modes. Figure 6-42 illustrates the

environment on table format.

Figure 6-42. Edit Displays

The items that comprise the Displays Edit menu are numbered in the preceding figure and are

described below:

1. Select the Displays tab

2. Right-click on any column header to select the configuration options that will be displayed

3. Click on the display rows to change the configurations

Name

This field indicates the display name.

6. BluePlant Components

78

Mode

This field refers to the display operation mode (Page, Dialog or Popup). They are detailed below:

 Page: This is the default Display mode. When a Page is opened automatically, it closes the last

page on the current layout

 Dialog: A Dialog display opens as a "Window Modal Dialog". This means that it disables the

commands on all other open displays. When clicking OK on a dialog, the OnOK method on

display CodeBehind is executed

 Popup: A popup display opens on the top of all other displays. When a new Page is opened, all

Popup displays are closed by default

Preview

This field displays the image Preview.

AlowSelection

This field refers to a flag indicating if the display is listed on the DisplaySelection object during

runtime. AllowSelection is a function used by the application/project creator to remove the page

selection, test and other displays from the default operator and assure that the removed items are

available only for specific application contexts as well. The built-in method for setting display

selection when running the application is the "PageSelecter" function which is set in

Edit>Displays>Displays tab. To block this selection from the default operator remove the check from

the page or from the "AllowSelection" option on objects column.

RunSecurity

This field refers to the security permissions groups required to open this display during Runtime. The

user must click on the "Run Security" field to open the "Run Security Selection" window and set the

desired options. A click anywhere in the table will close the selection window. The settings will be

displayed in the "RunSecurity" field of the table row.

Figure 6-43. Runtime Permissions

Configuring Multiple Monitors

The required steps to configure multiple monitors shown on Figure 6-44 are described below:

6. BluePlant Components

79

Figure 6-44. Multiple Monitors

1. Select Edit menu

2. Select Displays

3. Click on Displays tab to access the already existing display configurations of the project

4. Set the amount of monitors to be used

5. Select the corresponding layout to each monitor that will be opened when running the project

6. Click Clients button to make the configuration of the Rich Clients on Runtime (a single

configuration for all rich clients). See Figure 6-45

6. BluePlant Components

80

Figure 6-45. Rich Clients Configurations

Layouts

This tab edits the project layouts. Layouts are containers (DockPanels) that define Display

arrangement during the runtime execution. The last Display listed on the layout is the one that will be

changed when executing the Client.OpenDisplay() command. The other Displays that remain open

typically contain information like navigation menus, alarm lines and global application information.

The Project can have only one layout, or it can dynamically change the layout using the

Client.OpenLayout() command.

To create a new layout, or add/delete pages on the selected layout, the user should click the following

buttons: , and . The button enables the user to navigate up and down in the page

list. Layout dimensions and background color can be defined using Width, Height and Background

fields.

Figure 6-46 illustrates the layouts settings.

6. BluePlant Components

81

Figure 6-46. Edit Layouts

The required steps to edit and include a new layout shown Figure 6 46 are described below:

1. Select Edit menu

2. Select Displays

3. Click on Layouts to access the layout configurations already existing in the system

4. Click on New to add a new layout

5. Set the dimensions and background color of the corresponding layout

6. Set the amount of screens to be presented via the button

7. Select the screens and its positions on the layout

Page

This column refers to the name of the display used in this Layout. Only diplays on PAGE mode can

be included on layouts.

Docking

This column defines the Display Docking position. Docking positions:

 Left

 Top

 Right

 Bottom

The docking position can be changed by a click in the table field and selecting the desired position.

6. BluePlant Components

82

HorizontalAling

This column defines the Horizontal alignment. Possible options:

 Left

 Center

 Right

VerticalAling

This column defines the Vertical alignment. Possible options:

 Top

 Center

 Bottom

Margins

This column defines the Display margins inside the DockPanel. All the project display measures

(size, width, etc.) are in WPF Units (Windows Presentation Foundation).

Resources

This tab lists the Displays resources. In order to enable a distributed execution of the Runtime

displays and Web Clients (when using images on displays and reports), the user should import the

image(s) through the corresponding button () instead of selecting the file name.The

Resources tab presents the additional benefit that, in case an image is replaced in the

ResourceDictionary (not changing the Resource Name), it automatically updates all the references to

that specific resource on Displays and Reports. Figure 6-47 illustrates the three stages of the

Resource Edit menu.

6. BluePlant Components

83

Figure 6-47. Resources Edit

The required steps to import new images shown on Figure 6 47 are described below:

1. Select Edit menu

2. Select Displays

3. Click on Resources tab all images already imported in the project

4. Click on Import Images… button to select and import the image

Name

This field refers to the name of the Resource object. The name can be changed by a click in the

corresponding table field.

Preview

This field allows the Resource image Preview.

Editing Reports

The report editor allows the inclusion of dynamic text, dynamic symbol, graph, data sets as well as

the results view in a complete and easy-to-use editor. The Reports tab configuration is shown on

Figure 6-48.

6. BluePlant Components

84

Figure 6-48. Reports Configuration

The required steps to edit or include a new report shown on Figure 6-48 are described below:

1. Select Edit menu

2. Select Reports

3. Click on Reports tab to access all the already created reports of the project

4. Enter or edit the report name on the row labeled with an asterisk (*)

5. Set the report features such as data alignment, format and name of the file where will be created

the report

6. Click on TextEditor to edit the report format.

The Figure 6-49 details the last step.

6. BluePlant Components

85

Figure 6-49. Report Edit

Name

This field refers to the name of the Report object.

Padding

This field defines the Padding when replacing a TagName by its values. Possible options: Compact,

PadRight and PadLeft. The Padding uses the exact value number that is configured in the report

template when creating the Report in the Runtime. The left or right align value inside the space is

also included.

SaveFormat

This field defines the File format used to save the Report. Possible options: XPS, HTML, Unicode,

PDF and ASCII.

Save File Name

This field defines the filename used and where the report will be saved. This field can have Tags

values evaluated when generating the Alarm, for example. Add the Tag name in that table cell using

the XAML binding notation between curly brackets. Example:

C:\MYREPORT.XPS

C:\MYREPORT-MONTH{SERVER.MONTH}-DAY{SERVER.DAY}.XPS

TextEditor

This tab comprises a Text editor for creating reports, as illustrated on Figure 6-50.

6. BluePlant Components

86

Figure 6-50. Text Editor

Figure 6-51 shows the edit and saving procedures of a report using the text editor built in the

software.

Figure 6-51. Edit and Saving on Text Editor

Figure 6-52 shows the consolidation of the edited form on the preceding figure with some settings

available in the report edit menu.

Figure 6-52. Report Configuration

Draw Menu

The Draw environment provides access to all construction tools for building the application screens.

This menu affords the options: screens, codes and symbols. The option Draw allows the drawing of

Screens and Symbols. The vertical toolbar enables the user to select a specific component or use the

selection tool to move, group and resize this component. Figure 6-53 presents the vertical toolbar.

6. BluePlant Components

87

Figure 6-53. Draw Menu and Vertical Toolbar

The required steps to include a symbol on the screen are highlighted on the preceding figure and are

described below:

1. Select the symbol to be included by clicking on the icon placed on the vertical toolbar

2. Click and drag the symbol to the screen

3. Release the left button of the mouse to end the inclusion of the symbol

The horizontal toolbar (on the botton part of the screen) provides commands to group, combine, align

and block the selected symbol(s). The usage of the horizontal toolbar, as well as some context menu

commands, is shown on Figure 6-54.

Figure 6-54. Draw Menu and Horizontal Toolbar

6. BluePlant Components

88

The required steps to set the symbol properties are numbered below:

1. Select the desired symbol with the left button of the mouse. To obtain a multiple selection, press

SHIFT + CLICK WITH THE LEFT BUTTON in each desired component

2. Click on the symbol with the right button of the mouse to open the context menu

3. Select the desired option on context menu

4. Apply the desired properties to the symbol(s) using the toolbar

The items of the vertical toolbar shown on Figure 6-55 are detailed in the following.

Figure 6-55. Vertical Toolbar

Selection Tools

The Selection Tools are used to select an object and modify the drawing view area.

 Selection Tool

Click once on an object to select it. Press CTRL+MOUSE CLICK to select multiple objects (and object

groups), at the same time. Hold down the CTRL key as you click on each object. Press

SHIFT+MOUSE CLICK to toggle from among the selected objects. Click in an open area of the display

and then select a group of elements by highlighting the desired elements while holding down the left

mouse button. Double-click on an object to open the dynamic configuration window which provides

settings for dynamic object properties.

 Direct Selection Tool

This tool is used to select an object inside a group and modify its properties. Click once on the object

to select it. The user can also add, remove and modify the points in a Polyline by this tool. To move

the point, select by clicking on it while holding the left mouse button down and then, drag it to the

6. BluePlant Components

89

new position. To add a new point (adjacent to the selected one), double-click on a point. To delete a

point, right-click on it.

 Hand Tool

The Hand tool is used to modify the view window. By clicking once on the display background and

holding down the left mouse button, the display is shifted to the desired position.

Geometric Objects

 Creates a Rectangle object

 Creates an Ellipse object

 Creates a Polygon object

 Creates a Polyline object

A right-click of the mouse finalizes the use of each tool.

To obtain further information on how to add, modify and remove points after the creation of a

polygon/polyline check the Selection Tools section.

Display Components

These objects create screen components.

 Creates a Button object

 Creates a CheckBox object

A right-click on the component icon allows the user to access the tools in a horizontal popup menu.

Once a tool is selected in this menu it becomes the default one for that block in the vertical bar.

 Creates a RadioButton object

 Creates a ComboBox

 Creates a ListBox

 Creates a PasswordBox

 Creates a DatePicker Control

 Creates a DateTimeTextBox

Input and Output Text Tools

The text Input/Output tools are used to create input/output text objects

 Creates a TextOutput (TextBlock) object. See Figure 6-56.

6. BluePlant Components

90

Figure 6-56. TextOutput Object

One right-click of the mouse on the object allows the access to the suspended edit menu associated to

the text output, including its Dynamic Configuration, that can also be accessed through a double click

on the object.

 Creates a TextIO (TextBox) object. See Figure 6-57.

Figure 6-57. TextIO Object

One right-click of the mouse on the object allows the access to the suspended edit menu associated to

the text input/output, including its Dynamic Configuration that can also be accessed through a double

6. BluePlant Components

91

click on the object. For example, to link the TextIO with a Tag, double click the TextIO object, and,

on the dynamic configuration window, choose the TextIO dynamic.

Symbols Library

This item opens the Symbols Library.

 This Library includes both built-in and user-defined symbols.

Advanced Controls

 This item creates a WebBrowser object.

A right-click on the component icon allows the user to access the tools in a horizontal popup menu.

Once a tool is selected in the horizontal menu, it becomes the default one for that position in the

vertical bar.

 Creates a PageSelector object

 Creates a ReportViewer object

 Creates a XpsViewer object

 Creates a CircularPanel object

 Creates a Calculator object

 Includes aWPF control component

Alarm

The Alarm Object is used to control Warnings.

 Creates an Alarm Window.

This object enables the user to create and position an Alarm Window. See Figure 6-58.

Figure 6-58. Alarm Window

mk:@MSITStore:C:/Users/Philden/SkyDrive/Azzet/Técnico/MU_BluePlant_ENG/HELP_BluePlant_inglês.chm::/_2xo0zwihm.htm

6. BluePlant Components

92

Figure 6-59. Alarm Window Configuration

Control Name: Defines a name for the control. It is used via CodeBehind to link the graphical object

to a .Net class (TAlarmWindow).

MaxLines: Maximum number of rows that will be displayed in the object. The filter is done on the

server (no data sent from the server to the client with the purpose of improving performance).

List: Types of alarms that appear on the object.

 OnlineAlarms

 AlarmsHistory

 Events

 AlarmsHistory+Events

History Interval: DateTimeOffset that represents the beginning of the history period.

History Interval (To): DateTimeOffset that represents the end of the history period.

Ack by Page: Object configuration that, when triggered, recognizes all visible alarms in the alarm

object.

Show Column Titles: Enables to show the columns titles.

Show Group Control: Enables the area where the user can drag the column names to create groups

Show Group Control (Label): Text that will be displayed within the "Group control" area.

6. BluePlant Components

93

AllowSort: Enables the sort functionality on the right side of each column.

Allow Column Reorder: Enables the functionality of dragging the column to another column place,

swapping the order between them.

Display Value Column as String: Enables replace in column "Value" the value by its corresponding

string, configured in the dictionary.

Filter: This field is a "where" of a sql statement, so the valid syntax is anything valid in a "where"

sql statement, taking into account the existing column names in the object. Ex:

[TagName] = 'Tag.Tag1' AND [Group] = 'Alarm.Group.Critical'

Refresh: Object configuration that, when triggered, refreshes the alarm object.

Display Millisecond: Enables milliseconds visualization in date formatting.

Ack Selected Line: Configures the hotkey or combination of hotkeys to acknowledge the selected

row in the alarm object.

Columns: Through the up and down arrows, the user can change the order in which the columns will

be displayed in the alarm object.

For each column the following settings are possible:

Visible: Defines if the column is visible or not.

Allow Filter: Enables the filter option in the column.

Show in column chooser: Allows the user to select and drag the column.

Title: Sets the title that appears in the column header.

Width: Sets the column width.

Sort: Configures the type of sort sue that will be applied automatically in the column.

Trend

The Trend Object shows the historical record of a Tag.

 Creates a Trend Window.

The user should place the Trend window on the screen and double-click on it to open the

configuration window. Fields:

6. BluePlant Components

94

Figure 6-60. Trend Window Configuration

ControlName: Defines a name for the control, so it can be accessed in the associated code script.

See: Access to the Display object in the associated script.

0(online) 1(history): 0 - the control shows the online data. 1 - the control shows the history data. Ex:

Tag.onLineHist

OnlineTrigger: The refresh rate of the online trend control. Ex:

00:00:01 or {Tag.trendTimeSpan}

HistoryDateTime: The initial point for the history trend control. Ex:

{Tag.initialTrendHistory}

Max Samples: Sets the maximum amount of samples that will be collected from the database.

Window: Sets the background color of the trend control.

Labels: Sets the color of the trend control labels.

Cursor Enable: Enables (checked) or Disables (unchecked) the vertical cursor.

CursorPosition (%): Indicates the cursor position, where 0 means initial position and 100 means

end position. Ex:

Tag.cursorPos

Cursor Output: Indicates the X axis value for the current cursor position. Ex:

Tag.cursorOut

Cursor Color: Defines the cursor color.

Pens Legend: Defines the position of the pens legend in the trend control.

Y Axis

Range: Defines the minimum and maximum values for the Y Axis.

mk:@MSITStore:C:/Users/Philden/SkyDrive/Azzet/Técnico/MU_BluePlant_ENG/HELP_BluePlant_inglês.chm::/_2xb0rvs41.htm

6. BluePlant Components

95

Labels: Defines the quantity of horizontal grid lines.

Format: The format of the values in the Y Axis. For valid numeric formats, see the item that refers

to tag format. Ex: N1 (number with 1 decimal place).

X Axis

Interval: Defines the X Axis TimeSpan.

Labels: Defines the quantity of horizontal grid lines.

Format: The X Axis format is defined by two fields: first line format and second line format. This is

especially useful to represent label marks that require two levels of information. For valid date and

time formats, see the item that refers to Tag Format. Ex:

T (Time) for the first line format, d (short date) for the second line format.

Pens

Visible: Shows (1) or hides (0) the selected pen. Ex:

1 or {showPen1}

Tag: Sets the tag that will provide the value for the pen.

Min: Linear scale reference for the tag value, according to the Y Axis range.

Max: Linear scale reference for the tag value, according to the Y Axis range.

Pen: Sets the style, the color, and the thickness of the pen line.

Mark: Sets the mark for each point in the trend line.

CursorValue: Sets the tag that will receive the real value of the Y Axis, according to the cursor

position. Ex:

Tag.pen1CursorValue.

FieldName: Sets the pen name.

Y Axis Scaling: Consider Y Axis Min = 0 and Y Axis Max = 100.

The trend control allows many pens to be displayed together. When your pens are not on the same

range, you can use the tips below to fit your data in the same chart, for better visualization. If some

pen has a lower range, 0 to 1 for example, you can set the Max property of the pen to 1, so when the

real tag value is 1, the value 100 will be displayed in the chart (100/1 scale). If some pen has a higher

range, 0 to 1000 for example, you can set the Max property of the pen to 1000, so when the real tag

value is 1000, the value 100 will be displayed in the chart (1/10 scale).

Data Grid

 Creates a DataGrid window.

The user should place the DataGrid window on the screen and double-click on it to open the

configuration window.

mk:@MSITStore:C:/Users/Philden/SkyDrive/Azzet/Técnico/MU_BluePlant_ENG/HELP_BluePlant_inglês.chm::/_2us1b069b.htm

6. BluePlant Components

96

Figure 6-61. DataGrid Window Configuration

Control Name: Defines a name for the control. It is used via CodeBehind to link the graphical object

to a .Net class (TDataGridWindow)

Data Source: Dataset object in which the user wants to display the contents in the DataGrid. It can

be either Dataset.Table as Dataset.Query.

Selected Values: Refers to the tag array of the Text type, where the contents of each column will be

placed in each position of the array.

Selected Index: It is the object that receives the selected line.

Lines Count: It is the object that receives the number of rows in the DataGrid.

Theme: Selection of the visual theme to be used.

Binding mode: Selects the data flow shape:

OneTime: The grid object is populated only once.

OneWay: The GRID is populated only from the database.

TwoWay: The GRID is populated from the database and, when modified in the GRID, the data is

also updated in the database.

OneWayToSource: The data is only updated from the GRID to the database.

Allow Insert: Enables insertion of new rows in the DataGrid object.

6. BluePlant Components

97

Show group control: Enables the area where the user can drag the column names for grouping.

Show group control (Label): The text that will be displayed within the "Group control:" area.

Show Column Titles: Enables columns titles.

AllowSort: Enables the sort functionality on the right side of each column.

Auto Create Column: Enables the columns to be created automatically based on existing columns in

the datatable of the Dataset.Table or Dataset.Query.

Filter: This field is a "where" of a sql statement, so the valid syntax is anything valid in a "where"

sql statement, taking into account the existing column names in the object. Ex:

[Col1] = 'ABC' AND [Col2] = 'DEF'

Refresh: Object configuration that, when triggered, refreshes the GRID object.

Columns List: Through the up and down arrows, you can change the order in which the columns

will be displayed in the object, and with the buttons + and - you can add or remove columns.

For each column the following settings are possible:

Visible: Enable if the column is visible or not.

Editable: Enables if column content can be changed.

Show in column chooser: Allows the user to select and drag the column.

FieldName: Column name at database. If this information is incorrect the user will not be able to

bind the column to the datatable from the database.

FieldType: Type corresponding to the column in the database.

Title: Sets the title that appears in the column header.

Width: Sets the column width.

Sort: Configures the type of sort sue that will be applied automatically in the column.

Horizontal Toolbar

Graphical
Representation

Description

Open Grid Settings: Grid configuration and adjustment

Zoom: Zoom in or out adjustment

Group: Makes grouping of the selected objects

Ungroup: Makes ungrouping of the selected objects

Union: Makes the union of geometrical objects which generates only one
object

Intersect: Makes the intersection of geometrical objects which generates a
new object

Exclude: Makes the exclusion of the frontal geometric form between the
selected objects generating a new object

Exclusive-Or: Makes the exclusion of the intersection of the selected
geometric forms which generates a new object

Align Left: Makes the objects alignement at the left of the last selected
object

Align Horizontal Center: Centralizes the objects horizontally, being reference
the last selected object

Align Right: Makes the objects alignement at the right of the last selected
object

Align Top: Makes the objects alignement at the top of the last selected
object

6. BluePlant Components

98

Align Vertical Center: Centralizes the objects vertically, being reference the
last selected object

Align Bottom: Makes the objects alignement at the bottom of the last
selected object

Move to The Front: Moves the selected objects to the front

Move to The Back: Moves the selected objects to the back

Resize Width: Makes the width adjustment of the selected objects having as
reference the last selected object

Resize Height: Makes the height adjustment of the selected objects having
as reference the last selected object

Space Evenly Horizontally: Makes the horizontal spacement equal between
the selected objects

Space Evenly Vertically: Makes the vertical spacement equal between the
selected objects

Flip Horizontally: Makes the horizontal inversion of the selected objects

Flip Vertically: Makes the vertical inversion of the selected objects

Lock Element: Lock all the selected objects

Unlock Element: Unlock the selected object through the Direct Selection
Tool

Unlock All Elements: Unlcok all the display elements

Table 6-7. Horizontal Toolbar Elements

Dynamic Configuration

This option provides the access to the Dynamics Configuration window. Check a dynamic in order to

enable it, or uncheck some dynamic to disable it. See Figure 6-62.

Figure 6-62. Dynamic Configuration

The items that comprise the Dynamic Configuration shown on Figure 6-62 are described below:

6. BluePlant Components

99

Action

This entry executes the actions triggered by the user interface. Available configurations:

 Event: Choose one of the Mouse events. More than one event can be selected for each action.

o Ex: One action for MouseLeftButtonDown (press down left mouse button) and another action

for MouseLeftButtonUp (release left mouse button)

 Action: Choose one action for the given event. None: No action

 SetValue: Set a value to the object

 Object: The object that will receive the value

 Value: The value that will be passed to the object

 ToggleValue: Toggles the object value. If the object current value is zero, the value will be 1. If

the object current value is different than zero, the value will be 0. The "Object" field refers to the

object that will be toggled.

 OpenDisplay: Opens a display. The "Display" field refers to the name of the display that will be

opened

 CloseDisplay: Closes a display.

 OpenLayout: Opens a Layout. The "Layout" field refers to the Layout name that will be opened

 RunScript: Runs a script that is placed in the Code Associated to the Display. Write the new

method name and click on New Button, or select one of the existing methods in the ComboBox

 RunExpressions: Runs the given expression

 Expression: enter the expression. Ex: Tag.a + 1, or Tag.a + Tag.b, or Math.Cos(Tag.angle) *

Math.PI

 Result (optional): Enter the Tag or the property that will receive the expression value

Examples:

1. Run Expressions:

Sum two values and pass the result to another tag.

Expression:

Tag.quantity1 + Tag.quantity2

Result:

Tag.totalQuantity

2. Add one Tag

Expression:

TagCounter + 1

Result:

TagCounter

3. Add one Tag (0 - 10)

Expression:

If(TagCounter < 10 , TagCounter + 1 , 0)

Result:

TagCounter

These fields related to the expressions are illustrated on Figure 6-62.

Shine

This entry changes the object appearance dynamically. Available configurations:

IsMouseOver: Enter a tag that will receive the OverValue or the NotOverValue.

mk:@MSITStore:C:/Users/Philden/SkyDrive/Azzet/Técnico/MU_BluePlant_ENG/HELP_BluePlant_inglês.chm::/_2u90lie7q.htm

6. BluePlant Components

100

OverValue: Refers to the IsMouseOver value when the mouse is over the object.

NotOverValue: Refers to the IsMouseOver value when the mouse is NOT over the object.

Mouse Over Appearance: Refers to the object appearance when the mouse is over it.

Opacity: Refers to the object opacity (0 = transparent, 1 = opaque).

Scale: Refers to the object size (0.5 = half, 1 = the same size, 1.5 = one and a half, 2 = double size).

OuterGlow: Defines the OuterGlow color, the checkbox enables or disables it.

TextColor: Defines the text color, the checkbox enables or disables it.

Mouse Not Over Appearance: Refers to the object appearance when the mouse is not over it.

Opacity: Defines the object opacity (0 = transparent, 1 = opaque).

Scale: Defines the object size (0.5 = half, 1 = the same size, 1.5 = one and a half, 2 = double size).

IsSelected Appearance: Refers to the object appearance when it is selected.

IsSelected: Defines whether the object is selected or not.

Opacity: Refers to the object opacity (0 = transparent, 1 = opaque).

Scale: object size (0.5 = half, 1 = same size, 1.5 = 1,5 times, 2 = double size).

Scale Reference: Defines the reference for the scale dynamics.

 Center

 Left

 Up

 Right

 Down

TextIO

This entry refers to the Text Input and Text Output Dynamics. It is compounded by the following

settings:

Binding Mode: There is two ways: input and output are allowed; in the first, only input is allowed

(the current tag value is not shown, but new values can be entered); in the second, only output is

allowed.

Text: Indicates the text that will be shown in the object. If the text is a tag value or a property, it must

be between curly brackets, for example: {Tag.analogInt1}.

DesignModeCaption: The value shown in design mode.

 ShowObjectNames: the content of the Text field is shown exactly as it is.

 ShowPlaceHolders: the characters ### are shown and the quantity of characters is defined by the

MaxLength field.

Input Range: Defines the numeric range for the entered value.

CampoMaxLength: Defines the maximum characters amount.

Note:

If text is a tag value or a property, it must be between curly brackets, for example:

{Tag.analogInt1}

6. BluePlant Components

101

HyperLink

This entry opens a hyperlink.

HyperLink type: Choose one among the available options (http, ftp, file, mailto, telnet).

Url: Set the url to be opened.

FillColor

This entry changes the object fill color dynamically.

Expression: represents the value used for the FillColor dynamic.

ChangeColor: changes the object fill color through the following settings:

 UsingLimits: the resulting color will be given when the value is equal or higher than one of the

limits.

 AbsoluteValue: the color will be the expression value; in this case the value must be a valid

color. Ex: "White" or "#FFFFFFFF"

Using Limits Example:

1 - Red

10 - Blue

When the value is 0, the object will have its own color (fill color dynamic will not act)

When the value is 1 to 9, the object will have the red color.

When the value is greater than 10, the object will have the blue color.

LineColor

This entry changes the object line color dynamically.

Expression: Represents the value used for the LineColor dynamic.

ChangeColor: Changes the object line color trough the following settings:

 UsingLimits: The resulting color will be the given when the value is equal or higher than one of

the limits.

 AbsoluteValue: The color will be the expression value; in this case the value must be a valid

color. Ex: "White" or #FFFFFFFF"

Using Limits Example:

1 - Red

10 - Blue

When the value is 0, the object will have its own color (fill color will not do anything).

When the value is 1 to 9, the object will have the Red color.

When the value is greater than 10, the object will have the Blue color.

TextColor

This entry changes the object Text color dynamically.

Expression: Represents the value used for the TextColor dynamic.

ChangeColor: Changes the object Text color trough the following settings:

 UsingLimits: The resulting color will be given when the value is equal or higher than one of the

limits

6. BluePlant Components

102

 AbsoluteValue: The color will be the expression value; in this case the value must be a valid

color. Ex: "White" or #FFFFFFFF "

Using Limits Example:

1 - Red

10 - Blue

When the value is 0, the object will have its own color (fill color dynamic will not act).

When the value is 1 to 9, the object will have the red color.

When the value is greater than 10, the object will have the blue color.

Bargraph

This entry represents the Bar Graph Dynamic.

Expression: Represents the value used for the bar graph dynamic.

Range Value: The minimum and maximum values that will correspond to the minimum and

maximum fill percentage.

Fill (%): The minimum and maximum bar graph fill percentage.

Bar Color: The bar graph color.

Orientation: The bar graph orientation.

Elements Graphical
Representation

Description

Movement of the graph bars from the bottom part to the top

Movement of the graph bars from the center to the horizontal extremities

Movement of the graph bars from the top part to the bottom

Movement of the graph bars from the left to the right

Movement of the graph bars from the center to the vertical extremities

Movement of the graph bars from the right to the left

Table 6-8. Bargraph

Visibility

This entry changes the object visibility and opacity dynamically.

Visible: Enter a tag, a property or an expression returning a value. If the resulting value is zero, the

object will be visible; if it is greater than zero the object will be hidden.

Tooltip: The string that will appear as a tooltip.

Opacity: Configurations.

 Object Value: the value used to set the opacity

 Range: the minimum and maximum values that will correspond to the minimum and maximum

opacity

 Opacity: the minimum and maximum opacity (0 - invisible, 0.5 - a bit transparent, 1 - opaque)

Move and Drag

This entry moves the object dynamically.

6. BluePlant Components

103

BindingMode: Configurations.

 Two Ways: input and output moving

 Input Only: input movement only, the object does not move when its value changes

 Output Only: output moving only, the object does not move with user interaction

Horizontal Move: Configurations.

 Object Value: represents the value used for the horizontal moving

 Range: the minimum and maximum values that will correspond to the minimum and maximum

horizontal position

 Position : the minimum and maximum horizontal position

Vertical Move: Configurations.

 Object Value: represents the value used for the vertical moving

 Range: the minimum and maximum values that will correspond to the minimum and maximum

vertical position

 Position : the minimum and maximum vertical position

Scale

This entry changes the object size dynamically.

Width Scale: Configurations.

 Expression: represents the value used for the width scaling

 Range: the minimum and maximum values that will correspond to the minimum and maximum

width scale percentage

 Scale (%) : the minimum and maximum width scaling percentage

Height Scale: Configurations.

 Expression: represents the value used for the height scaling

 Range: the minimum and maximum values that will correspond to the minimum and maximum

height scale percentage

 Scale (%) : the minimum and maximum height scaling percentage

 Scale Reference:

 Center: Scale with reference at the center of the object

 Left: Scale with reference at the left of the object

 Up: Scale with reference on the top part of the object

 Right: Scale with reference at the right of the object

 Down: Scale with reference on the bottom part of the object

Rotate

This entry rotates the object dynamically.

Object Value: Represents the value used for the rotation.

Value Angle: The minimum and maximum values that will correspond to the minimum and

maximum angle. Ex: 0 to 100.

Angle: The minimum and maximum rotation angle. Ex: 0 to 360º.

6. BluePlant Components

104

Center Reference:

 Center: Rotation with reference on the center of the object

 Left: Rotation with reference at the left of the object

 Up: Rotation with reference on the top part of the object

 Right: Rotation with reference at the right of the object

 Down: Rotation with reference on the bottom part of the object

Skew

This entry skews the object dynamically.

X axis skew: configurations.

 Object Value: represents the value used for the X axis skewing

 Range: the minimum and maximum values that will correspond to the minimum and maximum

X axis skewing angle. Ex: 0 to 100

 Skew (º): the minimum and maximum values that will correspond to the minimum and maximum

X axis skewing angle. Ex: 0 to 180º

Y axis skew: configurations.

 Object Value: represents the value used for the Y axis skewing

 Range: the minimum and maximum values that will correspond to the minimum and maximum

Y axis skewing angle. Ex: 0 to 100

 Skew (º): The minimum and maximum Y axis skewing angle. Ex: 0 to 180º

 Scale Reference:

 Center: Skewing with reference on the center of the object

 Left: Skewing with reference at the left of the object

 Up: Skewing with reference on the top part of the object

 Right: Skewing with reference at the right of the object

 Down: Skewing with reference on the bottom part of the object

TextOutput

Dynamic text output.

Text: Indicates the text that will be displayed in the object. If the text is a Tag value or property it

must be enclosed in braces. Example:

{Tag.analogInt1}.

Localizable: Indicates whether text should be translated in case of dictionary change.

DesignModeCaption: The value shown in design mode:

 ShowObjectNames: the content of the Text field is shown exactly as it is

 ShowPlaceHolders: the characters ### are shown. The quantity of characters is defined by the

MaxLength field.

MaxLength: Sets the maximum number of characters.

6. BluePlant Components

105

Note:

If the text is a tag value or property it must be enclosed in braces, for example:

{Tag.analogInt1}.

CodeBehind

Use DrawCodeBehind to define a set of functions related with the displays as illustrated in Figure

6-63.

Figure 6-63. CodeBehind

These functions can be executed when opening or closing, or while the Display is opened, depending

on the configured code. You can use the associated code to define mouse and input command

handling methods to be executed on a specific display.

For DIALOG type displays use the built-in DialogOnOK method which is called when the built-in

OK button is pressed. If "TRUE" is returned on that method, the dialog is closed; if "FALSE" is

returned the dialog remains open. This method is commonly used to ensure data validation on the

dialog (which prompts the user to correct incorrect entries prior to the closing of the dialog). Options:

 DisplayOpening(): executed when display is opening

 DisplayIsOpen(): called in a regular interval while the display is open

 DisplayClosing(): executed when display is closing

 DialogOnOK(): called when OK button on a dialog display is pressed.

Returning "1" allows the dialog to close. Returning "0" prevents the dialog from closing. The user

can add .NET variables and methods on this page.

Note:

Because the client displays are designed to run on distributed and web environments it is

recommended to avoid the use of functions that do not allow partial trust execution or that refer to

physical file paths.

6. BluePlant Components

106

Symbols

Symbols are user-defined objects containing drawing and dynamic properties. The Figure 6-64 shows

a symbol and its context menu.

Figure 6-64. Symbol Context Menu

To simplify the use of symbols in other displays and applications, the user can define labels on

dynamic properties where a TagName is expected. Use the syntax:

#LabelName: or #LabelName:DefaultValue.

When using symbols on displays or reports, select new tag names on the configuration window to be

applied on defined label fields. A set of Symbols that is visible to all Projects is incorporated to the

BluePlant framework. Those symbols are defined in the SymbolLibrary.tproj file located at the

Product binary installation folder. The global Symbol Library file can be edited as a project file. The

user can also create and save his own Symbols.

Creating Symbols

The images of Figure 6-65, Figure 6-66 and Figure 6-67 present the required steps to create a

symbol. The procedures are also described below:

6. BluePlant Components

107

Figure 6-65. Creating Symbols

1. Select the Draw menu

2. Click on Drawing

3. Select the Rectangle object

4. Draw a rectangle on the screen and double-click the object created. The following screen will

appear

Figure 6-66. Dynamic Configuration

5. Select the Bargraph option.

6. In order to expose the Level, type the following syntax in the Expression field.

#Nivel:Server.Second

6. BluePlant Components

108

Note:

The symbol properties are exposed through the use of mnemonics, which are:

#<name>:<value> or #<name>:(<expression>).

7. Close the Dynamics Configuration screen.

8. Select all objects that make up the symbol (in this case, the rectangle only).

9. Right-click to open the context menu.

10. Select the option "Make new Symbol".

11. Fill out the information: symbol name, category, description and click YES.

12. This symbol will be available to be inserted at any point in the project through the Symbol

Library.

Figure 6-67. Dynamic Configuration

13. Go to the Symbol Library icon as shown in the figure above and insert the symbol created on the

screen.

14. Double click on the symbol to open the symbol configuration screen. The property "Level" with

the value "Server .second" will be shown and it can be changed to the desired tag. Each symbol

can present its independent level value.

Changing a Symbol

The following steps describe the symbol modification procedure.

1. Select the symbol to be modified

2. Right-click to open the context menu

3. Select the option "Edit <symbol name>"

4. Make all desired changes to the symbol

5. Select all objects that make up the symbol

6. Right-click to open the context menu

7. Select the option "Update <symbol name>"

6. BluePlant Components

109

8. All the symbols with this current screen name will be changed. A build operation saving all

screens is necessary in order to change all symbols with this name in the project.

Info Menu

Project

 Information submenu of the current project.

Version

Includes information about the current Project (Figure 6-68). Some information fields are also

available during Runtime through the Info Namespace.

Figure 6-68. Version Tab

The items that comprise the information menu are numbered in the preceding figure and are

described below:

1. Select the Info option

2. Select the Project option

3. Select the Version option for project data exhibition

Settings

The Settings tab items are explained below, as Figure 6-69 illustrates.

6. BluePlant Components

110

Figure 6-69. Settings Tab

The items that comprise the Settings tab are numbered in the preceding figure and are described

below:

1. Select the Info option

2. Select the Project option

3. Select the Settings option

Project Settings

This tab defines global settings for the Project. Some information fields are also available during

Runtime through the Namespace Info.

BluePlant Model

Select the corresponding runtime model. The following options are available:

 Express

 Enterprise

 Student

 Lite

Model

Select the runtime model. The following Runtime models are available:

 75

 150

 300

 500

 1.500

 2.500

 5.000

 15.000

 25000

 50.000

 100.000

6. BluePlant Components

111

 1.000.000

Culture Info

Select the project language among the available ones.

Target Framework

Select the framework, platform that BluePlant executes.

Code Language

Select the Script language. The following scripts code languages can be selected:

 VBdotNet

 CSharp

Default Page Size

Define the default page size. Figure 6-70 illustrates this option.

Figure 6-70. Page Size Adjustment

Redundancy

The Redundancy tab items are explained below, as Figure 6-71 illustrates.

6. BluePlant Components

112

Figure 6-71. Redundancy Tab

Enable configuration: Option to enable redundancy in the project.

Primary Server IP: Field to set the IP address of the primary server.

Secondary Server IP: Field to set the IP address of the secondary server.

Port: Port number that the server will use to communicate with other modules and servers.

On Primary Startup: Defines the behavior of the primary server on its startup:

 Switch to primary, put secondary in stand-by

 If secondary is active, put primary in stand-by

Historian Replication: Defines which historical data will be replicated automatically.

 None

 Alarm Historian

 Tag Historian

 Alarm and Tag Historian

Connection Timeout: Specified spare time that server waits in case of communication failure

between redundant servers and assumes as active.

Server Command Line: Command line used to startup the servers.

Client Command: Command line used to startup the clients.

Web command: URL used to access the project through Internet Explorer.

More information about the behavior of redundant servers can be found on Scenarios of Typical

Sistems.

6. BluePlant Components

113

Track

Tables

This tab of the Info menu, option Track, tracks the status of the configuration tables. The Figure 6-72

illustrates this selection.

Figure 6-72. Tables Tab of the Info Menu, Track Option

The items that comprise the Info menu – Track – Tables are numbered and described below:

1. Select Info option

2. Select Track option

3. Select Tables option

4. Right-click on any of the column headers and select the options to be displayed

The items of the Table tab are explained as follows and can be seen on Figure 6-72.TableName

TableName

Project Table Name. Attributes: ReadOnly.

Lines

Current number of Lines in the configuration table. Attributes: ReadOnly.

DateModified

Last modification Date. Attributes: ReadOnly.

ChangedSinceBuild

Changes since the last build command execution. Attributes: ReadOnly.

ChangedSincePublish

Changes since the last publish command execution. Attributes: ReadOnly.

Comments

User-defined comments. Attributes: Editable.

Changes

This tab of the Info menu, option Track, enables the user to track the project modifications. Figure

6-73 illustrates this selection. The Tracking field defines when the changes are going to be saved.

6. BluePlant Components

114

Figure 6-73. Changes Tab of the Info Menu, Track Option

The items that comprise the Info menu – Track - Changes are numbered in the preceding figure and

are described below:

1. Select the Info option

2. Select the Track option

3. Select the Changes option

4. Right-click on any of the column headers and select the options to be displayed

Module

Module name where the object is defined. Attributes: ReadOnly.

ObjectName

Object name or row index. Attributes: ReadOnly.

RowState

Operation executed on the Object. Attributes: ReadOnly.

Build

Project Build number when operation is executed. Attributes: ReadOnly.

Date

Modification execution date. Attributes: ReadOnly.

Comments

User-defined comments. Attributes: Editable.

Releases

This tab of the Info menu, option Track, enables the user to track the published versions of the

project. Figure 6-74 shows this selection.

6. BluePlant Components

115

Figure 6-74. Releases Tab of the Info Menu, Tack Option

The items that comprise the menu Info – Track - Releases are numbered in the preceding figure and

are described below:

1. Select the Info option

2. Select the Track option

3. Select the Releases option

4. Right-click on any of the column headers and select the options to be displayed

The Releases entries viewed in Figure 6-74 are detailed below.

Versionstring

Published version. Attributes: ReadOnly.

Build

Build number when publishing this version. Attributes: ReadOnly.

DatePublished

Version publishing date for this project. Attributes: ReadOnly.

User

User name who published this version. Attributes: ReadOnly.

Notes

This entry allows the user to create notes and "PostIt" type messages that can be visualized by all the

Project design team members. Notes are visible on the desktop when editing the Project.

This interface provides a simple "message board" table for the creation of critical reminders.

When a user clicks on a "closed" message, it remains closed but is not deleted. In order to delete a

message, the user must select the note on the table, double-click on it and then select the

corresponding option ("Delete Selected Row"). One click in "IsOpen" on message row, opens it.

To implement messages to the Project Operators during its execution use the OpenPopupNote()

function available in the options of the client runtime objects.

This tab of the Info menu, option Notes, edits the user notes concerning project configuration. Figure

6-75 illustrates it.

6. BluePlant Components

116

Figure 6-75. Notes Tab of the Info Menu, Notes Option

The items that comprise the Notes tab are numbered in the preceding figure and are described below:

1. Select the Info option

2. Select the Notes option

3. Select the Notes option

4. Right-click on any of the column headers and select the options to be displayed

Application Tools

This section explores the available tools in BluePlant.

 TStartup

 PropertyWatch

 TraceWindow

 ModuleInformation

Tstartup

When the user runs the project using the Manager or welcome interfaces, the TStartup Window pops

up according to Figure 6-76.

Content: information about modules status (running, stopped, paused). The associated commands are:

 Play Button: starts a module execution

 Stop Button: stops a module execution, close the connections and releases the resources

 Pause Button: pauses a module execution, usually used by the server redundancy feature

 Shutdown Button: stops the BluePlant Server (TServer) and all the modules

 Watch Button: starts the PropertyWatch

 Trace Button: starts the TraceWindow

 Info Button: starts the ModuleInformation

mk:@MSITStore:C:/Users/Philden/SkyDrive/Azzet/Técnico/MU_BluePlant_ENG/HELP_Versão_Estendida.chm::/_3nr0usmyt.htm
mk:@MSITStore:C:/Users/Philden/SkyDrive/Azzet/Técnico/MU_BluePlant_ENG/HELP_Versão_Estendida.chm::/_3nr0usteq.htm
mk:@MSITStore:C:/Users/Philden/SkyDrive/Azzet/Técnico/MU_BluePlant_ENG/HELP_Versão_Estendida.chm::/_3nr0utkga.htm

6. BluePlant Components

117

Figure 6-76. Startup Window

The user can call the Startup window using the command line. The available commands can be

checked at the Command Lines (Tstartup) section.

PropertyWatch

The PropertyWatch can be used to access tags and Properties Domain server, and change its values

as illustrated in Figure 6-77.

Figure 6-77. PropertyWatch

The user can call the PropertyWach using the command line. The available commands can be

checked at the Command Lines (PropertyWatch) section.

6. BluePlant Components

118

TraceWindow

The TraceWindow is used to capture messages from the BluePlant Runtime mmodules (Figure 6-78).

These messages are helpful to understand the runtime behavior.

Figure 6-78. TraceWindow

Adjustments:

Settings according to Figure 6-79:

 Modules: determines what modules the TraceWindow receives messages from

 Type: determines the message types that the TraceWindow receives

The user can add a Tag or property in the ObjectName field, and click the Add button, so a

notification will be sent to TraceWindow always the object changes its value.

Outputs:

 Grid: indicates the maximum number of files that appear in the grid

 File: a filename can be defined to save the messages

Figure 6-79. Configurations

6. BluePlant Components

119

The user can call the TraceWindow using the command line and specific parameters. The user can

send messages to the project TraceWindow through the Info.Trace (string str) funcion.

TraceWindow Message

Selects the message types of the trace window. Available types:

 Error

 Information

 Warning

 Debugging

ModuleInformation

ModuleInformation contains advanced information about the modules execution as shown in Figure

6-80.

Figure 6-80. Module Informations

The user can call the ModuleInformation using the command line and specific parameters.

Runtime Objects

This feature allows the user to view all the opened elements, including Displays, Scripts and Reports.

Runtime objects are in groups containing information about their specific functionalities, being called

Namespaces. The runtime available Namespaces list:

 Namespace Tag

 Namespace Security

 Namespace Alarm

 Namespace Device

 Namespace Dataset

 Namespace Script

 Namespace Display

 Namespace Report

 Namespace Info

 Namespace Server

 Namespace Client

During project configuration, type directly in the field. The "Intellisense" will guide the user to the

valid Namespaces for that field and the available members.

mk:@MSITStore:C:/Users/Philden/SkyDrive/Azzet/Técnico/MU_BluePlant_ENG/HELP_Versão_Estendida.chm::/_2u90atn4n.htm

6. BluePlant Components

120

On the Code Editor (ScriptCodeEditor and DrawCodeBehind interfaces) and on TextOutput dynamic

it is necessary to prefix the namespace with "@" symbol in order to avoid conflict with the .NET

Namespaces.

Example:

On the dialogs and grids (Figure 6-81), use:

Tag.Analog1

Alarm.Group.Warning.TotalActive

Device.Node.Node1.Status

Figure 6-81. Namespaces in Dialogs

On the script code (Figure 6-82), use:

@Tag.Analog1

@Alarm.Group.Warning.TotalActive

@Device.Node.Node1.Status

6. BluePlant Components

121

Figure 6-82. Namespaces in Scripts

Some fields on the Grids and Dialogs are allowed for one type of object (one namespace) only, e.g.,

"Tag" or "Display".

When the user type a Namespace in this field the Intellisense will guide him to the available objects.

Namespace Tag

All project realtime variables, or "Project Tags" as they usually are referred to in process automation

contexts, are available at this Namespace. The Tags are created at the EditTagsObjects interface. Use

the syntax Tag.Namespace to refer to a created Tag and Tag.namespace.Min to access Min Property.

For each tag a type is defined for its value. The following built-in types are available:

 Digital

 AnalogInt

 AnalogDouble

 AnalogDecimal

 Text

 TDateTime

 Counter

 Timer

 Reference

The syntax Tag.<TagName> is available for all tag types. To know the type of a particular tag, it is

possible to access additional properties and methods using the syntax:

Tag.<TagName>.<PropertyName>. The TagObj element shows properties and methods available for

all Tag Types. On the other hand, Analog shows common properties to all Analog tags (refers to the

tag type for specific properties). The types created by user combined with built-in types are allowed.

6. BluePlant Components

122

ClassTagObj

Base classes to all tag objects.

ForceValue

Forces the object's value property to the value passed as a parameter. Parameters: object value.

Example:

@Tag.AnalogInt1.ForceValue(10); (VB)

@Tag.AnalogInt1.ForceValue(10); (C#)

Tostring

Returns a string that represents the current object. Example:

Dim s as string; (VB)

@Tag.AnalogInt1 = 33;

s = Tag.AnalogInt1.Tostring();

string s; (C#)

@Tag.AnalogInt1 = 33;

s = Tag.AnalogInt1.Tostring();

In this example, “s” will be evaluated as "33".

Alarm Disable

Gets or sets the Tag's alarm disable state. If 0 (zero), the AlarmDisable property is not active. In the

case of a different value - not 0 (zero) - the AlarmDisable property is active. When the AlarmDisable

property is not active, all the alarms associated to the current Tag are not treated. Example:

@Tag.AnalogDecimal1.AlarmDisable = 1; (VB)

@Tag.AnalogDecimal1.AlarmDisable = 1; (C#)

In this example, the alarms associated to the object AnalogDecimal1 will not be treated.

Alarm State

Gets or sets the Tag's alarm state. If 0 (zero): not in alarm state. A value not 0 (zero): in alarm state.

Example:

Dim alarmState as Int; (VB)

alarmState = @Tag.AnalogDecimal1.AlarmState;

int alarmState; (C#)

alarmState = @Tag.AnalogDecimal1.AlarmState;

GetName

Gets the Tag's name. Example:

@Tag.ReferenceTagName.Link = @Tag.TagName.GetName(); (VB)

@Tag.ReferenceTagName.Link = @Tag.TagName.GetName(); (C#)

AlarmUnack

Gets or sets the current Tag's alarm acknowledgement state. If 0 (zero): current alarm acknowleged.

If not 0 (zero): current alarm unacknowledged. Example:

Dim alarmStatus as Int; (VB)

alarmStatus = @Tag.AnalogDecimal1.AlarmUnack;

int alarmStatus; (C#)

alarmStatus = @Tag.AnalogDecimal1.AlarmUnack;

6. BluePlant Components

123

Changed

Gets or sets the Tag's value changed state. If True: value changed. If False: value not changed.

Domain

Gets or sets the Tag's Domain property. If 0 (zero): Server. If 1: Client.

EngUnits

Gets or sets the engineering units used to quantify the Tag.

Format

Gets or sets the format of the Tag's value for display purposes.

Historian

Gets the HistoryItem object where the current tag is configured as TagName. If duplicated tags are

allowed in the historian tables, then Historian will point to the last HistoryItem object where the

current tag is configured as TagName. Example:

@Tag.AnalogInt1.Historian.Deadband = 3; (VB)

@Tag.AnalogInt1.Historian.Deadband = 3; (C#)

Locked

Gets or sets the Tag's locked state. When a Tag is locked, the value used in the processing originates

from the LockValue property and not from the value property. If 0 (zero): not locked. A not 0 (zero)

value: locked. Example:

@Tag.AnalogDouble1.Locked = 1; (VB)

@Tag.AnalogDouble1.Locked = 1; (C#)

Quality

Gets or sets the Tag's quality state. Default values:

Value Quality

0 Bad

192 Good

Table 6-9. Quality Default Values

Example:

@Tag.AnalogInt1.Quality = 192; (VB)

@Tag.AnalogInt1.Quality = 192; (C#)

Retentive

Gets or sets the Tag's retentive property, which specifies if the tag's value property should be saved

when the application shuts down. The saved value is then used as the startup value on the next

application execution. If 0 (zero): not retentive. A value not 0 (zero): retentive. Example:

@Tag.AnalogInt1.Retentive = 1; (VB)

@Tag.AnalogInt1.Retentive = 1; (C#)

6. BluePlant Components

124

TimeStamp

Gets or sets the tag's timestamp property. Example:

Dim dt coo DateTimeOffset; (VB)

dt = @Tag.AnalogDouble1.Timestamp;

DateTimeOffset dt; (C#)

dt = @Tag.AnalogDouble1.Timestamp;

ValueType

Gets the tag's ValueType property. Example:

Dim doubleType as Integer; (VB)

doubleType = @Tag.AnalogDouble1.ValueType;

int doubleType; (C#)

doubleType = @Tag.AnalogDouble1.ValueType;

Visibility

Gets or sets the tag's visibility state. If 0 (zero): private, 1: protected and 2: public. Example:

Dim visibilityState as Integer; (VB)

visibilityState = @Tag.AnalogDouble3.Visibility;

int visibilityState; (C#)

visibilityState = @Tag.AnalogDouble3.Visibility;

Class Digital

Runtime properties for digital class. Possible values: 0 = false and 1 = true. Equivalent in the script:

 C#: int32

 VB: int

 .NET: int

Toogle

Toggles the tag's value property between 0 (zero) and 1. If current value is 0 (zero), then new value is

1. If current value is 1, then new value is 0 (zero). Example:

Dim newValue as Byte; (VB)

newValue = @Tag.Digital1.ToggleValue();

byte newValue; (C#)

newValue = @Tag.Digital1.ToggleValue();

Lock

Gets or sets the tag's LockedValue property. When a tag is locked, the value that is used for

processing originates from the LockValue property and not from the Value property. Example:

@Tag.Digital1.LockValue = 1; (VB)

@Tag.Digital1.LockValue = 1; (C#)

State

Gets the digital tag's state property. If Value = 0 corresponds to State = False (VB) or State = false

(C#). If Value = 1 corresponds to State = True (VB) or State = true (C#).

Value

Gets or sets the digital tag's value property. Valid values are 0 (zero) or 1. Example:

6. BluePlant Components

125

@Tag.Digital1.Value = 1; (VB)

@Tag.Digital1.Value = 1; (C#)

6. BluePlant Components

126

Class Analog

Runtime properties for Analog class.

Member Description

Bit0 Gets or sets the bit 0 of the tag's value

Bit1 Gets or sets the bit 1 of the tag's value

Bit10 Gets or sets the bit 10 of the tag's value

Bit11 Gets or sets the bit 11 of the tag's value

Bit12 Gets or sets the bit 12 of the tag's value

Bit13 Gets or sets the bit 13 of the tag's value

Bit14 Gets or sets the bit 14 of the tag's value

Bit15 Gets or sets the bit 15 of the tag's value

Bit16 Gets or sets the bit 16 of the tag's value

Bit17 Gets or sets the bit 17 of the tag's value

Bit18 Gets or sets the bit 18 of the tag's value

Bit19 Gets or sets the bit 19 of the tag's value

Bit2 Gets or sets the bit 2 of the tag's value

Bit20 Gets or sets the bit 20 of the tag's value

Bit21 Gets or sets the bit 21 of the tag's value

Bit22 Gets or sets the bit 22 of the tag's value

Bit23 Gets or sets the bit 23 of the tag's value

Bit24 Gets or sets the bit 24 of the tag's value

Bit25 Gets or sets the bit 25 of the tag's value

Bit26 Gets or sets the bit 26 of the tag's value

Bit27 Gets or sets the bit 27 of the tag's value

Bit28 Gets or sets the bit 28 of the tag's value

Bit29 Gets or sets the bit 29 of the tag's value

Bit3 Gets or sets the bit 3 of the tag's value

Bit30 Gets or sets the bit 30 of the tag's value

Bit31 Gets or sets the bit 31 of the tag's value

Bit4 Gets or sets the bit 4 of the tag's value

Bit5 Gets or sets the bit 5 of the tag's value

Bit6 Gets or sets the bit 6 of the tag's value

Bit7 Gets or sets the bit 7 of the tag's value

Bit8 Gets or sets the bit 8 of the tag's value

Bit9 Gets or sets the bit 9 of the tag's value

Hi Gets or sets the tag's high limit

HiHi Gets or sets the tag's highhigh limit

Lo Gets or sets the tag's low limit

LoLo Gets or sets the tag's lowlow limit

Table 6-10. Runtime Properties for Analog Class

Class Analog<T>

Runtime properties for Analog <T> class.

Deadband

Gets or sets the analog tag's deadband. Example:

@Tag.AnalogDouble1.Deadband = 5; (VB)

@Tag.AnalogDouble1.Deadband = 5; (C#)

6. BluePlant Components

127

LockValue

Gets or sets the analog Tag's lock value. Example:

@Tag.AnalogDouble1.LockValue = 50; (VB)

@Tag.AnalogDouble1.LockValue = 50; (C#)

Analog.Min

Gets or sets the analog Tag's maximum value. Example:

@Tag.AnalogDouble1.Max = 100; (VB)

@Tag.AnalogDouble1.Max = 100; (C#)

Analog.Min

Gets or sets the analog tag's minimum value. Example:

@Tag.AnalogDouble1.Min = 0; (VB)

@Tag.AnalogDouble1.Min = 0; (C#)

StartValue

Gets or sets the analog tag's start value. Example:

@Tag.AnalogDouble1.StartValue = 50; (VB)

@Tag.AnalogDouble1.StartValue = 50; (C#)

State

Gets or sets the analog Tag's state. If Value equals 0 (zero), then state is FALSE. If Value is not zero,

then state is TRUE. Example:

Dim state as Boolean; (VB)

state = @Tag.AnalogDouble1.State;

bool state;

state = @Tag.AnalogDouble1.State; (C#)

Value

@Tag.AnalogDouble1.Value = 55; (VB) or

@Tag.AnalogDouble1 = 55;

@Tag.AnalogDouble1.Value = 55; (C#) or

@Tag.AnalogDouble1 = 55;

Class AnalogInt

Runtime properties for AnalogInt class.

Class AnalogDecimal

Runtime properties for Analog Decimal Class.

Class AnalogDoble

Runtime properties for AnalogDouble Class.

Class Text

Runtime properties for Text class.

6. BluePlant Components

128

LockValue

Gets or sets the text tag's lock value. Example:

@Tag.Text1.LockValue = "Welcome"; (VB)

@Tag.Text1.LockValue = "Welcome"; (C#)

Value

Gets or sets the text tag's value. Example:

@Tag.Text1.Value = "My text"; (VB) or

@Tag.Text1 = "My text";

@Tag.Text1.Value = "My text"; (C#) or

@Tag.Text1 = "My text";

Class TDataTime

Runtime properties for TDataTime class.

LockValue

Gets or sets the TDataTime tag's lock value. Example:

@Tag.Text1.LockValue = "Welcome"; (VB)

@Tag.Text1.LockValue = "Welcome"; (C#)

Value

Gets or sets the TDataTime tag's value. Example:

@Tag.Text1.Value = "My text"; (VB) or

@Tag.Text1 = "My text";

@Tag.Text1.Value = "My text"; (C#) or

@Tag.Text1 = "My text";

Class Counter

Runtime properties for Counter class.

Event

Gets the Counter Tag's event. Possible values: "Change", "ChangeUp" and "ChangeDown".

Example:

Dim counter1Event as string; (VB)

counter1Event = @Tag.Counter1.Event;

string counter1Event; (C#)

counter1Event = @Tag.Counter1.Event;

Model

Gets the Counter Tag's model. Possible values: "Up" and "Down". Example:

Dim counter1Model as string; (VB)

counter1Model = @Tag.Counter1.Model;

string counter1Model; (C#)

counter1Model = @Tag.Counter1.Model;

Trigger

Gets or sets the Counter Tag's trigger. Example:

6. BluePlant Components

129

@Tag.Counter1.Trigger = "Tag.Digital1"; (VB)

@Tag.Counter1.Trigger = "Tag.Digital1"; (C#)

Class Timer

Runtime properties for Timer Class.

Interval

Gets or sets the Timer Tag's interval. The interval is a string that represents a time interval and is

displayed in the format "hh:mm:ss.mmm". Example:

@Tag.Timer1.Interval = "0:0:10"; (VB)

@Tag.Timer1.Interval = "0:0:10"; (C#)

Model

Gets the Timer Tag's model. Possible values: "SquareWave", "Pulse" and "Comparer". Example:

Dim timerModel as string; (VB)

timerModel = @Tag.Timer1.Model;

string timerModel; (C#)

timerModel = @Tag.Timer1.Model;

Class Reference

Runtime properties for Reference Class.

Link

Gets or sets the Reference Tag's link. Example:

@Tag.Reference1.Link = @Tag.TagName.GetName(); (VB)

@Tag.Reference1.Link = @Tag.TagName.GetName(); (C#)

Class TDataTable

Runtime properties for TDataTable Class.

Initialize

Sets a new reference to the Table object. This method is only used internally.

Table

Gets a copy of the DataTable object. Example:

Dim dt as New TDataTable(parent, id); (VB)

Dim table As DataTable;

table = dt.Table;

TDataTable dt = new TDataTable(parent, id); (C#)

DataTable table;

table = dt.Table;

OverwriteOnUpdate

Gets or sets the OverwriteOnUpdate operand. This property is only used internally.

6. BluePlant Components

130

Update

Updates the Table object. This method is only used internally. Parameters: DataTable table

Class UserType

Runtime properties for UserType Class.

Namespace Security

Class ModuleSecurity

Runtime properties for ModuleSecurity objects.

GetPasswordHint

Returns (displays) the password hint for the selected user name. Parameter: string userName.

Example:

Dim pswHint As string = @Security.GetPasswordHint("User"); (VB)

string pswHint = @Security.GetPasswordHint("User"); (C#)

AddRuntimeUser

Adds a user to the Runtime user list. Parameters: string name; string permissionsStr; string password;

string passwordHint; string policyStr; string profileEmail; string profilePhone and string

profileCompleteName. Example:

@Security.AddRuntimeUser("User", "User", "psw", "remember", "Default",

"a@b.com", "67521855", "Alfred Burns"); (VB)

@Security.AddRuntimeUser("User", "User", "psw", "remember", "Default",

"a@b.com", "67521855", "Alfred Burns"); (C#)

GetListOfUserNames

Returns the list of Runtime user names separated by \n (newline). Example:

Dim userList as string; (VB)

userList = @Security.GetListOfUserNames();

string userList; (C#)

userList = @Security.GetListOfUserNames();

RemoveRuntimeUser

Removes a Runtime user from the Runtime user list. Parameter: string name. Example:

@Security.RemoveRuntimeUser("User"); (VB)

@Security.RemoveRuntimeUser("User"); (C#)

Permission

Gets the permission list. Refers to SecurityPermission objects. Example:

Dim permissionList as SecurityPermissionList; (VB)

permissionList = @Security.Permission;

SecurityPermissionList permissionList; (C#)

permissionList = @Security.Permission;

User

Gets the user list. Providers access to SecurityUser objects. Example:

6. BluePlant Components

131

Dim userList as SecurityUserList; (VB)

userList = @Security.User;

SecurityUserList userList; (C#)

userList = @Security.User;

Policy

Gets the Policy list. Example:

Dim policyList as SecurityPolicyList; (VB)

policyList = @Security.Policy;

SecurityPolicyList policyList; (C#)

policyList = @Security.Policy;

Class SecurityPermission

Runtime properties for SecurityPermission objects.

DateCreated

Gets the date and time that the SecurityPermission was created. Example:

Dim permissionDate as DateTime; (VB)

permissionDate = @Security.Permission.Administrator.DateCreated;

DateTime permissionDate; (C#)

permissionDate = @Security.Permission.Administrator.DateCreated;

DateModified

Gets the date and time that the SecurityPermission was modified. Example:

Dim permissionDate as DateTime; (VB)

permissionDate = @Security.Permission.Administrator.DateModified;

DateTime permissionDate; (C#)

permissionDate = @Security.Permission.Administrator.DateModified;

Description

Gets the description of the SecurityPermission. Example:

Dim permissionDescription as string; (VB)

permissionDescription = @Security.Permission.Administrator.Description;

int permissionDescription; (C#)

permissionDescription = @Security.Permission.Administrator.Description;

Edit

Gets the Edit permission. Example:

Dim editPermission as Integer; (VB)

editPermission = @Security.Permission.Administrator.Edit;

int editPermission; (C#)

editPermission = @Security.Permission.Administrator.Edit;

Name

Gets the SecurityPermission name. Example:

Dim permissionName as string; (VB)

permissionName = @Security.Permission.Administrator.Name;

string permissionName; (C#)

permissionName = @Security.Permission.Administrator.Name;

6. BluePlant Components

132

Run

Gets the run Permission. Example:

Dim runPermission as Integer; (VB)

runPermission = @Security.Permission.Administrator.Run;

int runtPermission; (C#)

runPermission = @Security.Permission.Administrator.Run;

Class SecurityUser

Runtime properties for SecurityUser objects.

DateCreated

Gets the date and time the SecurityUser was created. Example:

Dim userDate as DateTime; (VB)

userDate = @Security.User.Guest.DateCreated;

DateTime userDate; (C#)

permissionDate = @Security.User.Guest.DateCreated;

DateModified

Gets the date and time the SecurityUser was modified. Example:

Dim userDate as DateTime; (VB)

userDate = @Security.User.Guest.DateModified;

DateTime userDate; (C#)

userDate = @Security.User.Guest.DateModified;

PolicyName

Gets the SecurityUser's policies name. Example:

Dim userPolicyName as string; (VB)

userPolicyName = @Security.User.Guest.PolicyName;

string userPolicyName; (C#)

userPolicyName = @Security.User.Guest.PolicyName;

SecurityUser.Blocked

Gets the SecurityUser's blocked state. Example:

Dim blockedState as Boolean; (VB)

blockedState = @Security.User.Guest.Blocked;

bool blocked; (C#)

blocked = @Security.User.Guest.Blocked;

SecurityUser.Deleted

Gets the SecurityUser's deleted state. Example:

Dim deletedState as Boolean; (VB)

deletedState = @Security.User.Guest.Deleted;

bool deleted; (C#)

deleted = @Security.User.Guest.Deleted;

SecurityUser.Name

Gets the SecurityUser's name. Example:

Dim userName as string; (VB)

6. BluePlant Components

133

userName = @Security.User.Guest.Name;

string userName; (C#)

userName = @Security.User.Guest.Name;

SecurityUser.PasswordHint

Gets the SecurityUsers password hint. Example:

Dim pswHint as string; (VB)

pswHint = @Security.User.Guest.PasswordHint;

string pswHint; (C#)

pswHint = @Security.User.Guest.PasswordHint;

SecurityUser.Permissions

Gets the SecurityUser's permissions. Example:

Dim userPermissions as Long; (VB)

userPermissions = @Security.User.Guest.Permissions;

long userPermissions; (C#)

userPermissions = @Security.User.Guest.Permissions;

SecurityUser.PermissionsName

Gets the SecurityUser's permissions name. Example:

Dim permissionsName as string; (VB)

permissionsName = @Security.User.Guest.Permissions;

string permissionsName; (C#)

permissionsName = @Security.User.Guest.Permissions;

SecurityUser.Policy

Gets the SecurityUser's policies. Example:

Dim userPolicy as Long; (VB)

userPolicy = @Security.User.Guest.Policy;

long userPolicy; (C#)

userPolicy = @Security.User.Guest.Policy;

SecurityUser.Profile

Gets the SecurityUser's profile. Example:

Dim userProfile as string; (VB)

userProfile = @Security.User.Guest.Profile;

string userProfile; (C#)

userProfile = @Security.User.Guest.Profile;

Namespace Alarm

Runtime objects and methods related to the alarm module.

Class AlarmGroup

Runtime properties for AlarmGroup objects.

6. BluePlant Components

134

AckAll

Acknowledge all alarm items that belong to this group. Toggle the set property to AckAll. Allowed

values: 0 (acknowledgement if the value was 1) and 1(acknowledgement if the value was 0).

Example:

@Alarm.AckAll = (@Alarm.AckAll==0) ? 1 : 0;

AckRequired

Get the acknowledgment of the defined required operator. Allowed values: 0 (no Acknowledgement

required) and 1 (acknowledgement required). Example:

int AckReq = @Alarm.Group.Critical.AckRequired;

se (AckReq == 1) @Alarm.AckAll = (@Alarm.AckAll==0) ? 1 : 0;

Colors

Represents the foreground and background colors for each alarm state. This property represents the

value that was configured in the Colors column.

Description

AlarmGroup description configured in EditAlarmsGroups. Example:

@Tag.string = @Alarm.Group.Critical.Description;

Disable

Disable/Enable an alarm group. Allowed values: 0 (enable an Alarm Group) and 1 (disable an Alarm

Group). Example:

@Alarm.Group.Critical.Disable = 1;

Id

Gets the ID of an Alarm Group. Example:

@Tag.Int = @Alarm.Group.Critical.Id;

LogEvents

Get the type of Historian archiving on Alarm events. Allowed values:

 0 - None

 1 - Active

 2 - ActiveAck

 3 - ActiveNorm

 4 - All

Example:

@Tag.Int = @Alarm.Group.Critical.LogEvents;

PriorityItem

Return the highest priority Alarm item of an Alarm Group. Example:

@ALARM.PRIORITYITEM PITEM = @ALARM.GROUP.CRITICAL.PRIORITYITEM;

6. BluePlant Components

135

Show

Gets a configured value to display/not display an alarm. Allowed values:

 0 - None

 1 - List

Example:

@Tag.Int = @Alarm.Group.Critical.Show;

Sound

Property to describe if the Alarm Group Sound is enabled or disabled. Default values:

 0 - None

 1 - Beep

Example:

@Tag.Int = @Alarm.Group.Critical.Sound;

TotalCount

Get the number of Active Alarms. Example:

@Tag.Int = @Alarm.Group.Critical.TotalCount;

UnAckCount

Get the number of Unacknowledge Alarms. Example:

@Tag.Int = @Alarm.Group.Critical.UnAckCount;

Class AlarmItem

Runtime properties for Alarm Items objects.

AckTime

Time that an Alarm is set at "Acknowledge".

ActiveTime

Time that an Alarm Item started.

Alarm

Property to check if an Alarm Item is active.

ColorBG

Configured Background Color of an Alarm Item.

ColorFG

Configured Foreground Color of an Alarm Item.

Condition

Configures evaluation condition to generate an Alarm Item. Allowed values:

6. BluePlant Components

136

 Hi

 HiHi

 Lo

 LoLo

 RateOfChange

 DeviationMinor

 DeviationMajor

 Equal

 GreaterThan

 GreaterEqual

 LessThan

 LessEqual

 Changed

 ChangedUp

 ChangedDown

Deadband

Deadband of a defined alarm item. Configures the inactivity time of the alarm item. The value is

chosen by user.

Disable

Property to disable/enable an alarm item. Allowed values:

 0 - Enable

 1 - Disable

Group

A group to which an Alarm Item belongs.

Id

Object ID (Internal Use).

Limit

Get defined value to evaluate the Alarm item conditions.

Message

Get the configured message to display when Alarm occurs.

NormTime

Time that an Alarm takes to get back to "Normal".

Priority

Get an Alarm Item Priority. The value is chosen by user.

Setpoint

Get the defined value to evaluate Alarm Item conditions.

6. BluePlant Components

137

SetPointDeadband

Represents the dead band for the SetPoint property. Used for the following alarm conditions:

DeviationMinor and DeviationMajor.

State

Get an alarm item state. It can be: Active, Acknowledge, Normalized and TagName. The last one

gets the defined TagName that will be evaluated to generate an alarm item.

UnAck

Property set/get an unacknowledged alarm item. Allowed values:

 0 - Unacknowledge alarm item

 1 - Acknowledge alarm item

Class ModuleAlarm

Runtime methods and properties for the alarm module.

AckAll

Trigger this property to acknowledge all Alarms.

BeepState

Indicates if beep is set to ON (value = 1) on the client computer.

Group

Provides access to Alarm Group objects.

InitializationMessage

Get/set initial message to display.

Item

Access to Alarm Item objects.

LastErrorMessage

Contains description message of the most recent error occurred in the Alarm Module.

LastStoredTimeStamp

Contains the TimeStamp of the most recent error that occurred in the Alarm Module.

PriorityItem

Reference to the highest priority online Alarm Item.

QueryActive

TDataTable object with the current active Alarm list.

6. BluePlant Components

138

TotalCount

Total count of active alarms.

UnAckCount

Total count of Alarms that require acknowledgment.

Namespace Device

Runtime objects and methods related to the Device.

Class DeviceAccessType

Runtime properties for DeviceAccessType objects.

AcceptUnsolicited

When set to true, the device points are allowed to receive unsolicited messages. The device channel

must have the AcceptUnsolicited property set to "true" to allow unsolicited messages.

ReadOnStartup

When set to true, the device point will be read on the startup of the Devices Module.

ReadPooling

When set to true, it indicates that the Pooling read is enabled for this device point.

ReadPoolingRate

Indicates the Pooling rate for the group of points.

WriteEnable

When set to true, the device point is written to the device when its value changes.

Class DeviceChannel

Runtime properties for DeviceChannel objects.

Activity

Activity indication. The device module toggles this value to each operation completed in this

Channel.

6. BluePlant Components

139

LastErrorCode

Last (most recent) Error Status Code that occurred in this channel. Allowed values:

Value Description

0 Success

-1 BuildCommandException

-2 ParseCommandUnsolicitedException

-3 ParseReplyException

-4 BuildReplyUnsolicitedException

-5 ChannelException

-6 NodeException

-100 Base Send Error

-101 Base SendAndWait Error

-102 TCP Create Error 1

-103 TCP Create Error 2

-104 TCP Create SocketError

-105 TCP Connect Callback Error

-106 TCP Receive Error

-107 UDP Create Error

-108 UDP Receive Error

-109 Serial Create Error

-110 Serial Receive Error

-111 TCP NotConnected

-112 Start message timeout

-113 Receiving bytes timeout

-114 End message timeout

-115 Connect timeout

-200 ProtocolError

-201 InvalidProtocol

-202 InvalidStation

-203 InvalidCommand

-204 InvalidMsgSequence

-205 InvalidCheckSum

-206 InvalidAddress

-207 InvalidModifiers

Table 6-11. Error Status Code for Channel or Node

Note:

Positive values are specific protocol error codes.

LastErrorDateTime

TimeStamp of the last (most recent) error in this channel.

Status

Current status for this channel according to Table 6-11.

Class DeviceNode

Runtime properties for DeviceNode objects.

6. BluePlant Components

140

Activity

Activity indication. The device module toggles this value to each operation completed in this node.

BackupStation

Current backup station for this Node.

IsBackup

Indication of active Backup station .

IsPrimary

Indication of active PrimaryStation.

IsRedundancyEnabled

Node redundancy indication.

LastErrorCode

Last Error Code status (most recent) that occurred in this node according to Table 6-11.

LastErrorDateTime

DateTime for the last (most recent) error in this Node.

PrimaryStation

Current primary station for this Node.

Status

Current status for this Node according to Table 6-11.

Class ModuleDevice

Runtime methods and properties for the Device Module.

AccessType

Access to DeviceAccessType objects.

Channel

Access to DeviceChannel objects.

Node

Access to DeviceNode objects.

Namespace Dataset

Runtime objects and methods related to the database.

6. BluePlant Components

141

Class DatasetDB

Runtime properties for DatasetDB objects.

Connectionstring

String used to connect with the database.

Database

Name of the DB object database.

Id

Object Identification (internal use).

LogonName

Logon name used to connect with the database.

Provider

Selected Database provider.

Class DatasetFile

Runtime properties for DatasetFile objects.

LoadCommand

Loads the values of the tags configured in the Objects property from the file indicated by the

FileName property. Parameter: string statusMessage (message with the status of the load command).

SaveCommand

Saves the values of the tags configured in the Objects property from the file indicated by the

FileName property. Parameter: string statusMessage (message with the status of the save command).

Completed

The value of this property is incremented when an operation is concluded.

Description

Gets the description of the configured DatasetFile.

Disable

Disables the commands to the DatasetFile when the value is greater than zero. Default values:

 0 = Enables the commands to the DatasetFile

 1 = Disables the commands to the DatasetFile

FileName

Complete path of the file that will be created or loaded. This property represents the value that was

configured in the FileName column.

6. BluePlant Components

142

FileType

Indicates the file format. Allowed values:

 ASCII = 0

 Unicode = 1

 XML = 2

This property represents the value that was configured in the FileType column.

Id

Object Identification (internal use).

LastStatus

Gets the status of the last (most recent) asynchronous operation. Default values:

 Zero = Success

 Different than zero = Error code

LastStatusMessage

Gets the status message of the last (most recent) asynchronous operation.

Load

Sends a Load asynchronous command when the value is changed. The value of the LoadExecuted

property is changed when the operation is concluded. Example:

if (@Dataset.File.File1Unicode.Load.Equals(0))

@Dataset.File.File1Unicode.Load = 1;

else

@Dataset.File.File1Unicode.Load = 0;

LoadExecuted

The value of this property is changed when the Load asynchronous command is completed.

Objects

Contains the tags and indexes to be saved or loaded. The default values are: TagName (represents the

tag name and the start index can also be specified) and Index (indicating the index - if the Tag is an

array and the start index is specified). Example:

TagName Index

Tag.doubleArray[0] 10

Tag.textArray[2] 5

Tag.SelectStatusMsg

Table 6-12. Example of Objects Option

Save

Sends a Save command when the value is changed. The value of the SaveExecuted property is

changed when the operation is concluded. Example:

if (@Dataset.File.File1Unicode.Save.Equals(0))

@Dataset.File.File1Unicode.Save= 1;

6. BluePlant Components

143

else

@Dataset.File.File1Unicode.Save= 0;

SaveExecuted

The value of this property is changed when the asynchronous save command is completed.

Class DatasetQuery

Runtime properties for DatasetQuery objects.

ExecuteCommand

Execute a synchronous command according to the SqlStatement. Returned values (status of the

operation):

 Zero = Success

 Different than zero = Error code

ExecuteCommandWithStatus

Execute a synchronous command according to the SqlStatement (displays a status message).

Returned values (status of the operation):

 Zero = Success

 Different than zero = Error code

Parameters: out string statusMessage (message indicates the status of the command Next).

NextCommand

Executes a synchronous Next command that increments the value of the CursorIndex property.

Returned values (status of the operation):

 Zero = Success

 Different than zero = Error code

The tags configured in the mapping column will receive the value of the next row.

NextCommandWithStatus

Executes a synchronous Next command that increments the value of the CusorIndex property, and

displays a status message. Returned values (status of the operation):

 Zero = Success

 Different than zero = Error code

Associated parameter: out string statusMessage (message that indicates the status of the command

Next). The tags configured in the mapping column will receive the value of the next row.

SelectCommand

Executes a synchronous Select command, according to the SqlStatement. Returned values:

DataTable, if success; otherwise, null. The tags configured in the mapping column will receive the

value of the first row. Example:

DataTable dataTable = @Dataset.Query.query1.SelectCommand();

if (dataTable != null && dataTable.Rows.Count > 0)

{

@Tag.firstItem = dataTable.Rows[0]["Item"].Tostring();

6. BluePlant Components

144

}

SelectCommandWithStatus

 Executes a synchronous Select command according to the SqlStatement, and displays status

information. Returned values: DataTable, if success; otherwise, null. The first associated

parameter is: out in status. The operation status is:

 Zero = Success

 Different than zero = Error code

The second associated parameter is: out string statusMessage (message that indicates the status of the

Select command). The tags configured in the mapping column will receive the value of the first row.

Example:

int status;

string statusMessage;

DataTable dataTable;

dataTable = @Dataset.Query.query1.SelectCommandWithStatus(out status,

out statusMessage);

if (status == 0 && dataTable != null && dataTable.Rows.Count > 0))

{

@Tag.firstItem = dataTable.Rows[0]["Item"].Tostring();

}

AsyncContents

Contains the TDataTable that resulted from one of the asynchronous commands, such as Select or

Update.

Completed

The value of this property is incremented when an asynchronous operation is concluded.

CursorIndex

Defines the current row position in the resulting DatasetTable.

DB

Gets the DB configured in EditDatasetsTables.

Description

Gets the description of the DatasetQuery.

6. BluePlant Components

145

Disable

Disables the commands to the DatasetQuery when the value is greater than zero. Return values:

 0 = Enables the commands to the DatasetQuery

 1 = Disables the commands to the DatasetQuery

Execute

The value of the ExecutedCompleted property is changed when the operation is concluded. Example:

if (@Dataset.Query.Query1.Execute.Equals(0))

@Dataset.Query.Query1.Execute = 1;

else

@Dataset.Query.Query1.Execute = 0;

ExecuteCompleted

The value of this property is changed when the operation is completed.

Id

Object Identification (internal use).

LastStatus

Gets the status of the last (most recent) asynchronous operation. Returned values:

 Zero = Success

 Different than zero = Error code

LastStatusMessage

Gets the status message of the last (most recent) asynchronous operation, where an empty string

indicates success.

Mapping

Gets the mapping of the resulting DataTable columns with the tags. Returned values:

TagName Column

int_Id ID

txt_Name Name

txt_Description Description

Table 6-13. DataTable Columns Mapping

Result:

Tag.int_Id=ID;

Tag.txt_Name=Name;

Tag.txt_Description=Description;

Next

Sends an asynchronous Next command when the value is changed. The value of the NextExecuted

property is changed when the operation is concluded. Example:

if (@Dataset.Query.Query1.Next.Equals(0))

6. BluePlant Components

146

@Dataset.Query.Query1.Next = 1;

else

@Dataset.Query.Query1.Next = 0;

NextExecuted

The value of this property is changed when the asynchronous Next command is completed.

RowCount

Gets the total number of rows in the resulting DatasetTable.

Select

Sends an asynchronous Select command when the value is changed. The value of the SelectExecuted

property is changed when the operation is concluded. Example:

if (@Dataset.Query.Query1.Select.Equals(0))

@Dataset.Query.Query1.Select= 1;

else

@Dataset.Query.Query1.Select= 0;

SelectExecuted

The value of this property is changed when the asynchronous Select command is completed. The

value of the SelectExecuted property is changed when the operation is concluded.

SqlStatement

Defines the SQL command to be executed.

Class DatasetTable

Runtime properties for DatasetTable objects.

DeleteCommand

Deletes the current row of the DatasetTable. Returned values (status of the operation):

 Zero = Success

 Different than zero = Error code

The index of the current row is defined by the CursorIndex property.

DeleteCommandWithStatus

Deletes the current row of the DatasetTable and provides a status message. Returned values (status of

the operation):

 Zero = Success

 Different than zero = Error code

Parameters: out string statusMessage (message indicates the status of the delete command, where an

empty string signifies success). The index of the current row is defined by the CursorIndex property.

InsertCommand

Inserts the values of the tags configured in the mapping column into the DatasetTable at the position

indicated by the CursorIndex property. Returned values (status of the operation):

mk:@MSITStore:C:/Users/Philden/SkyDrive/Azzet/Técnico/MU_BluePlant_ENG/HELP_BluePlant_inglês.chm::/_2us17iz49.htm

6. BluePlant Components

147

 Zero = Success

 Different than zero = Error code

InsertCommandWithStatus

Inserts the values of the tags configured in the mapping column into the DatasetTable at the position

indicated by the CursorIndex property, and provides a status message. Returned values (status of the

operation):

 Zero = Success

 Different than zero = Error code

Associated parameters: out string statusMessage (message that indicates the status of the insert

command, where an empty string signifies success).

NextCommand

Executes a synchronous Next command that increments the value of the CursorIndex property.

Returned values (status of the operation):

 Zero = Success

 Different than zero = Error code

The tags configured in the mapping column will receive the value of the next row.

NextCommandWithStatus

Executes a synchronous Next command that increments the value of the CursorIndex property, and

provides a status message. Returned values (status of the operation):

 Zero = Success

 Different than zero = Error code

Associated parameters: out string statusMessage (message that indicates the status of the Next

command, where an empty string signifies success). The tags configured in the mapping column will

receive the value of the next row.

SelectCommand

Executes a synchronous Select command on the DatasetTable. Returned values: DataTable, if

success; otherwise, null. The tags configured in the mapping column will receive the value of the first

row. Example:

DataTable dataTable = @Dataset.Table.table1.SelectCommand();

if (dataTable != null && dataTable.Rows.Count > 0)

{

@Tag.firstItem = dataTable.Rows[0]["Item"].Tostring();

}

SelectCommandWithStatus

Executes a synchronous Select command on the DatasetTable, and provides status messages.

Returned values: DataTable, if success; otherwise, null.

 Parameter 1: out int status. Status of the select operation:

 Zero = success

 Different than zero = error code

Parameter 2: out string statusMessage (message indicates the status of the Select command, where an

empty string signifies success). The tags configured in the mapping column will receive the value of

the first row. Example:

6. BluePlant Components

148

int status;

string statusMessage;

DataTable dataTable;

dataTable = @Dataset.Table.table1.SelectCommandWithStatus(out status, out

statusMessage);

if(status == 0 && dataTable != null && dataTable.Rows.Count > 0))

{

@Tag.firstItem = dataTable.Rows[0]["Item"].Tostring();

}

UpdateCommand

Updates the current row of the DatasetTable with the values of the tags configured in the mapping

column. Returned values: DataTable, if success; otherwise, null. The index of the current row is

defined by the CursorIndex property.

UpdateCommandWithStatus

Updates the current row of the DatasetTable with the values of the tags configured in the mapping

column, and provides status information. Returned values: DataTable, if success; otherwise, null.

Parameter 1: out int status. Status of the update operation:

 Zero = success

 Different than zero = error code

Parameter 2: out string statusMessage (message indicates the status of the update command, where

an empty string signifies success). The index of the current row is defined by the CursorIndex

property.

Access

Access Type of the DatasetTable. Returned values:

 0 - Read

 1 - Insert

 2 - Read/Write

 3 - Unrestricted

AsyncContents

Contains the TDataTable resulting from one of the asynchronous commands, such as <i>Select or

Update.

Completed

The value of this property is incremented when an asynchronous operation is concluded.

CursorIndex

Defines the current row position in the DatasetTable.

DB

Gets the DB configured in EditDatasetsTables.

Delete

Sends an asynchronous Delete command when the value is changed.

6. BluePlant Components

149

The value of the DeleteExecuted property is changed when the operation is concluded. Example:

if (@Dataset.Table.table1.Delete.Equals(0))

@Dataset.Table.table1.Delete= 1;

else

@Dataset.Table.table1.Delete = 0;

DeleteExecuted

The value of this property is changed when the asynchronous Delete command is completed.

Description

Gets the Description of the DatasetTable.

Disable

Disables the commands to the DatasetTable when the value is greater than zero. Returned values:

 0 = Enables the commands to the DatasetTable

 1 = Disables the commands to the DatasetTable

Id

Object identification (internal use).

Insert

Sends an asynchronous Insert command when the value is changed. The value of the InsertExecuted

property is changed when the operation is concluded. Example:

if (@Dataset.Table.table1.Insert.Equals(0))

@Dataset.Table.table1.Insert= 1;

else

@Dataset.Table.table1.Insert = 0;

InsertExecuted

The value of this property is changed when the asynchronous Insert command is completed.

LastStatus

Gets the status of the last (most recent) asynchronous operation. Returned values:

 Zero = success

 Different than zero = error code

LastStatusMessage

Gets the status message of the last (most recent) asynchronous operation, where an empty string

signifies success.

Mapping

Gets the mapping of the DataTable columns with the Tags. Example:

TagName Column

int_Id ID

txt_Nome Name

6. BluePlant Components

150

txt_Description Description

Table 6-14. Mapping

Result:

Tag.int_Id=ID;

Tag.txt_Name=Name;

Tag.txt_Description=Description;

Next

Sends an asynchronous Next command when the value is changed. The value of the NextExecuted

property is changed when the operation is concluded. Example:

if (@Dataset.Table.table1.Next.Equals(0))

@Dataset.Table.table1.Next= 1;

else

@Dataset.Table.table1.Next = 0;

NextExecuted

The value of this property is changed when the asynchronous Next command is completed.

RowCount

Gets the total number of rows in the DatasetTable.

Select

Sends an asynchronous Select command when the value is changed. The value of the SelectExecuted

property is changed when the operation is concluded.

SelectExecuted

The value of this property is changed when the operation is completed.

Example:

if (@Dataset.Table.table1.Select.Equals(0))

@Dataset.Table.table1.Select = 1;

else

@Dataset.Table.table1.Select = 0;

TableName

Gets the name of the DataTable.

Update

Sends an asynchronous Update command when the value is changed. The value of the

UpdateExecuted property is changed when the operation is concluded. Example:

if (@Dataset.Table.table1.Update.Equals(0))

@Dataset.Table.table1.Update = 1;

else

@Dataset.Table.table1.Update = 0;

6. BluePlant Components

151

UpdateExecuted

The value of this property is changed when the asynchronous Update command is completed.

WhereCondition

Defines the Where condition for the DatasetTable. The SQL WHERE clause is used to select data

conditionally. Example:

Type Price($) DateAdded

1 27 10/02/2008

1 120 07/10/2010

2 50 12/01/2009

Table 6-15. SQL WHERE

@Dataset.Table.table1.WhereCondition = "DateAdded > '01/01/2010'";

The command will return only the items where the DateAdded is greater than 01/01/2010.

Class ModuleDataset

Runtime methods and properties for the Dataset Module.

DB

Provides access to DatasetDB objects.

File

Provides access to DatasetFile objects.

Query

Provides access to DatasetQuery objects.

Table

Provides access to the DatasetTable objects.

Namespace Script

Runtime objects and methods related to the Script.

Class ModuleScript

Runtime methods and properties for the Script module.

RunTasksSimultaneous

Allows simultaneous execution of tasks (Multi-Threading). Allowed values:

 0 - Simultaneous execution NOT allowed

 1 - Simultaneous execution allowed

Task

Access to ScriptTask objects.

6. BluePlant Components

152

Syntax:

Script.Task.<TaskName>.

UserClass

Access to ScriptUserClass objects.

Sintax:

Script.UserClass.<UserClassName>.

Class ScriptTask

Script Tasks class.

Description

Gets the ScriptTask Description configured in EditScriptsTasks.

Disable

Disables the ScriptTask execution when the value is greater than zero. Default values:

 Zero = success

 Different than zero = error code

Domain

Indicates the ScriptTask Domain. Allowed values: 0 - Server and 1 - Client. If Server: the ScriptTask

runs in the Server context, it cannot access client objects i.e., displays or client domain tags. If Client:

the ScriptTask runs in each client where the ModuleScript is running.

ErrorMessage

Contains the message with the last (most recent) error that occurred in the script execution.

Event

Reserved for future use.

ExecutionsCount

Gets the amount of executions since the module has started.

LastCPUTime

Gets the CPU time used during the last (most recent) execution of the script.

LastExecution

Contains the TimeSpan of the last (most recent) execution of the script.

Period

Period of time required to execute a Task. This property represents the value configured in

EditScriptsTasks.

6. BluePlant Components

153

Running

Indicates if the current script is running. Default values:

 0 - ScriptTask is NOT running

 1 - ScriptTask is running

StopExecutionOnError

Indicates if the script execution must be stopped if an error occurs.

Trigger

Gets the Tag or Object that triggers the Task execution. This property represents the value configured

in EditScriptsTasks.

Namespace Display

Runtime objects and methods related to the application displays.

Class Display

Runtime properties related to the Display objects. Sintax: Display.<DisplayName>

Close

Closes the selected display.

Open

Opens the selected display.

Description

Gets the description of the display, configured in EditDisplaysDisplays.

Id

Object identification (internal use).

IsOpened

Indicates if the selected display is opened.

Class Layout

Runtime properties for Layout objects. Sintax: Layout.<LayoutName>.

OpenCommand

Opens the selected Layout.

Description

Gets the description of the layout, configured in EditDisplaysLayouts.

6. BluePlant Components

154

Id

Object identification (internal use).

IsOpened

Indicates if the selected layout is opened.

Namespace Report

Runtime objects and methods related to the Report Module.

Class ModuleReport

Access to <ReportItem> objects.

Class ReportItem

Runtime properties for Report objects.

OpenCommand

Opens the selected report. Return values:

 True = success

 False = failed

The ReportViewer can be used to view the content of the report.

SaveCommand

Saves the selected report into the path indicated by the SaveFileName property. Return values:

 True = success

 False = failed

Append

Indicates whether the report will be overwritten or appended on Save commands. Allowed values:

 0 – Report overwritten on Save commands

 1 – Report appended on Save commands

Completed

The value of this property is incremented when a Save or Load operation is concluded.

Description

Gets the ReportItem description configured in EditReportsReports.

Disable

Disables the ReportItem operations when the value is greater than zero. Returned values:

 Zero = Enables the ReportItem

 Greater than zero = Disables the ReportItem

6. BluePlant Components

155

Id

Object identification (internal use).

LastStatus

Gets or sets the status of the last ReportItem processed. Allowed values:

 Success = 0

 InvalidMode = 1

 Disabled = 2

 NoObjectsConfigured = 3

 ReportException = 4

 InvalidContent = 5

 ModuleStopped = 6

 ModulePaused = 7

LastStatusMessage

Gets or sets the status message of the last ReportItem processed. Default values:

 "Success"

 "InvalidMode"

 "Disabled"

 "NoObjectsConfigured"

 "ReportException"

 "InvalidContent"

 "ModuleStopped"

 "ModulePaused"

OpenExecuted

Gets or sets the OpenExecuted state in report. Allowed values:

 0 (zero) - Open Command not executed

 1 - Open Command executed

Padding

Gets the padding value in the Report. Allowed values:

 Compact = 0

 PadRight = 1

 PadLeft = 2

SaveExecuted

Gets or sets the SaveExecuted state in the report. Allowed values:

 0 (zero) - Save Command not executed

 1 - Save Command executed

SaveFileName

Gets or sets the complete path used when saving the Report.

6. BluePlant Components

156

SaveFormat

Gets or sets the save format Report. Allowed values:

 XPS = 0

 Html = 1

 Unicode = 2

 ASCII = 3

 PDF = 4

Namespace Info

Runtime objects and methods related to project informations.

Class ModuleInfo

Trace

Traces a system object. The references to this object are displayed in the trace window. Parameter:

string text. Example:

@Info.Trace("Digital1") (VB)

@Info.Trace("Digital1"); (C#)

License

Gets the InfoLicense object that represents the current license.

ExecutionPath

Gets the execution path which points to the folder where the system executable modules are installed.

Module

Gets the InfoModuleList object that represents the modules list.

OnlineConfig

Gets the online configuration state. Valid values:

 TRUE - online configuration is enabled

 FALSE - online configuration is disabled

Project

Gets the InfoProjectVersion object that represents the information of the project version.

ProjectSettings

Gets the InfoProjectSettings object that represents the information of the project settings.

TestMode

Gets the project’s test mode state. Valid values:

 TRUE - The project is in test mode

 FALSE - The project is not in test mode

6. BluePlant Components

157

TestModeSync

Gets the test mode synchronization state. If 0 (zero): test mode synchronization disabled. If not 0

(zero): test mode synchronization enabled. Test mode synchronization allows Test Mode to work

with the available values of the actual tags from the startup execution.

Note:

TestModeSync: This feature is available only in Enterprise version.

Class InfoprojectVersion

CurrentBuild

Gets the current build number.

DateCreated

Gets the DateTime object that represents the date that the Project version was created.

DateModified

Gets the DateTime object that represents the date that the Project version was modified.

Description

Gets the Project version description.

ProductFamily

Gets the product family of the project version. Possible values:

 "Student"

 "Express"

 "Lite"

 "Enterprise"

ProductModel

Gets the product model of the Project version. Possible values:

 75

 150

 300

 500

 1500

 2500

 5000

 15000

 25000

 50000

 100000

 1000000

ProductName

Gets the product name of the project version. Possible value: "BluePlant".

6. BluePlant Components

158

ProductVersion

Gets the product version of this project version.

ProjectName

Gets the project name of this project version.

ProjectPath

Gets the project version path.

TargetFramework

Gets the target framework of this Project version.

Versionstring

Gets the project version string. Example: "1.0 (Editing)".

Class InfoProjectSettings

CultureInfo

Gets the project's language.

Class InfoModuleList

Alarm

Gets the InfoModule object for the Alarm module.

DataSet

Gets the InfoModule object for the DataSet module.

Device

Gets the InfoModule object for the Device module.

Display

Gets the InfoModule object for the Display module.

Historian

Gets the InfoModule object for the Historian module.

ModuleInformation

Gets the InfoModule object for the ModuleInformation module.

OPCServer

Gets the InfoModule object for the OPCServer module.

6. BluePlant Components

159

PropertyWatch

Gets the InfoModule object for the PropertyWatch module.

Report

Gets the InfoModule object for the Report module.

ReportServer

Gets the InfoModule object for the ReportServer module.

Script

Gets the InfoModule object for the Script module.

Security

Gets the InfoModule object for the Security module.

Server

Gets the InfoModule object for the Server module.

TraceWindow

Gets the InfoModule object for the TraceWindow module.

Class InfoLicense

AllowedRichClients

Gets the AllowedRichClients state. Valid values:

 Zero - rich clients not allowed

 Not zero - rich clients allowed

AllowedRunInstances

Gets the AllowedRunInstances state. Valid values:

 Zero - run instances not allowed

 Not zero - run instances allowed

AllowedTagElements

Gets the AllowedTagElements state. Valid values:

 Zero - Tag elements not allowed

 Not zero - Tag elements allowed

AllowedWebClients

Gets the AllowedWebClients state. Default values:

 Zero - web clients not allowed

 Not zero - web clients allowed

6. BluePlant Components

160

DateCreated

Gets the date and time that the license was created.

DateModified

Gets the date and time that the license was modified.

ExpirationDate

Gets the date and time that the license expires.

LicenseMedia

Gets the information about license media. Possible values:

 "Hardkey"

 "Softkey"

LicenseType

Gets the information about the license type. Possible values:

 "None"

 "Run"

 "Eng_Run"

 "Developer"

ProductFamily

Gets the license product family. Possible values:

 "Student"

 "Express"

 "Lite"

 "Enterprise"

ProductModel

Gets a numeric value that features the license product model. Possible values: 75, 150, 300, 500,

1.500, 2.500, 5.000, 15.000, 25000, 50.000, 100.000, 1.000.000.

ProductVersion

Gets the license product version.

SerialNumber

Gets the license serial number.

ServerConnected

Gets the server full address.

AllowedEngineeringUsers

Gets the AllowedEngineeringUsers state. Default values:

6. BluePlant Components

161

 Zero - engineering users not allowed

 Not zero - engineering users allowed

AllowedDevices

Gets the AllowedDevices state. Default values:

 Zero - devices not allowed

 Not zero - devices allowed

Class InfoModule

IsPaused

Gets or sets the module's IsPaused state. Possible values:

 TRUE - module is paused

 FALSE - module is not paused

IsRunning

Gets or sets the module's IsRunning state. Possible values:

 TRUE - module is running

 FALSE - module is not running

Namespace Server

Runtime objects and methods related to the Server.

ServerStation

The ServerStation class contains information about the computer on which the Runtime Server

(TServer.exe program) is running.

LoadProjectVersion

Loads the project pointed by the specified path. The path must point to a valid project in the Server.

Returned values: true if success and false if failure. Parameter: string projectPathName.

SwitchToStandby

Switches the execution to the standby computer if redundancy is enabled. Returned values: TRUE if

success and FALSE if failure.

HttpAddress

Gets the server's http address.

6. BluePlant Components

162

IsPrimary

Gets the server's IsPrimary state. Possible values:

 TRUE - server is primary

 FALSE - server is not primary

IsRedundancyEnabled

Gets the server's IsRedundancyEnabled state. Default values:

 TRUE - redundancy is enabled

 FALSE - redundancy is not enabled

IsSecondary

Gets the server's IsSecondary state. Default values:

 TRUE - server is secondary

 FALSE - server is not secondary

IsStandByActive

Gets the server's IsStandByActive state. Default values:

 TRUE - the standby server is active

 FALSE - the standby server is inactive

IsSwitchToPrimaryEnabled

Gets the server's IsSwitchToPrimayEnabled state. Valid values:

 TRUE - switch option to primary enabled

 FALSE - switch option to primary not enabled

ServerStation.ComputerIP

Gets or sets the server's computer IP.

ServerStation.ComputerName

Gets or sets the server's computer name.

ServerStation.Date

Gets the server's date.

ServerStation.Day

Gets the server's day of the month.

ServerStation.DayOfWeek

Gets the server's day of the week.

ServerStation.DayOfYear

Gets the server's day of the year. Default values: 1 to 366.

6. BluePlant Components

163

ServerStation.Hour

Gets the hour of the server's day.

ServerStation.Minute

Gets the minute component of the server's date.

ServerStation.Month

Gets the month component of the server's date.

ServerStation.Now

Gets the server's local date and time offset.

ServerStation.Second

Gets the “second” component of the server's date.

ServerStation.ShutDown

Gets or sets the server's shutdown state. Possible values:

 TRUE - server is being turned off

 FALSE - server is not being turned off

ServerStation.Startup

Gets the server's startup state. Default values:

 TRUE - server has started up

 FALSE - server has not started up

ServerStation.Ticks

Gets the number of ticks that represent the server's date and time.

ServerStation.Time

Gets the server's time of day.

ServerStation.Year

Gets the year component of the server's date.

TimeMs

Gets the server's time of day (including milliseconds).

Namespace Client

Runtime objects and methods related to the Client Namespace.

Class ClientStation

The ClientStation class contains information about the computer on which the Client is running

(TVisualizer.Exe or Web clients).

6. BluePlant Components

164

ChangeUserPassword

Changes the password of the referenced user. Returned value: true if success and false if failure.

Parameters: string username, string oldPassword and string newPassword.

CloseDisplay

Closes the referenced display. Parameter: string displayName.

GetPasswordHint

Gets the password hint for the referenced user. Returned value: the password hint. Parameter: string

userName.

Locale

Returns the localized text. Returned value: localized text. Parameter: string text.

LogOn

Performs the logon of the specified user with the specified password. Parameters: string username

and string password. Returned values:

 OK = 0

 ServerNotAvailable = 1

 InvalidLogon = 2

 ServerNotConnected = 3

 UserBlocked = 4

 UserDeleted = 5

 CannotStartModule = 6

 InvalidUserName = 10

 InvalidPassword = 11

 PermissionsRestrictions = 12

 UnknownError = 99

LogOnGuest

Performs the logon of the user as "Guest".

OpenDisplay

Opens the display at the layout's last page. Parameter: string displayName.

OpenDisplayAtIndex

Opens the display at the layout's page specified by the index. Parameters: string displayName and int

index.

OpenLayout

Opens the referenced layout. Parameter: string layoutName.

OpenPopupNote

Opens a popup note with the specified title and description. Parameters: string title, string

description, bool isReadOnly, double left and double top.

6. BluePlant Components

165

OpenPreviousPage

Opens the previously displayed page. Default values:

 TRUE if success

 FALSE if failure.

SaveLayoutAsImage

Saves the layout as an image. The path for the file will be defined in the subsequent dialog.

SaveLayoutAsImageFile

Saves the layout as image. The file path is defined in the next dialog.

SwitchToStandby

Switches the Server to Standby mode. Default values:

 TRUE if success

 FALSE if failure

BeepOff

Gets or sets the client's beep off state. Default values:

 TRUE - beep off

 FALSE - beep on

BlinkFast

Gets the client's blink fast property. The blink fast property is a digital variable that toggles from 0 to

1 and from 1 to 0, remaining 500 milliseconds in each state.

BlinkSlow

 Gets the client's blink slow property. The blink slow property is a digital variable that toggles from 0

to 1 and from 1 to 0, remaining 250 milliseconds in each state.

ComputerIP

Gets the computer IP.

ComputerName

Gets the computer name.

CultureInfo

Gets or sets the client's language selection.

CurrentPage

Gets the name of the client's page currently displayed.

CurrentUser

Gets the client's current user.

6. BluePlant Components

166

Date

Gets the client's date.

DateTime

Gets the client's date and time.

Day

Gets the client's day of the month.

DayOfWeek

Gets the client's day of the week.

DayOfYear

Gets the client's day of the year.

Dictionary

Gets or sets the client's dictionary.

Hour

Gets the hour component of the client's date.

InputPassword

Gets or sets the client's input password. This is an auxiliary variable used in the system’s default

logon window.

InputUserName

Gets or sets the client's input user name. This is an auxiliary variable used in the system’s default

logon window.

IsWebBrowser
Gets the client's IsWebBrowser state.

LayoutName

Gets or sets the client's layout name.

Millisecond

Gets the millisecond component of the client's date.

Minute

Gets the minute component of the client's date.

Month

Gets the month component of the client's date.

6. BluePlant Components

167

Now

Gets the client's local date and time offset.

OnScreenKeyboard

Gets or sets the client's screen and keyboard state.

PreviousPage

Gets the client's previous page name.

Second

Gets the “second” component of the client's date.

SelectedPage

Gets or sets the client's selected page name.

ServerHttpAddress

Gets the server's http address.

ShutDown

Gets or sets the client's shutdown state. Possible values:

 TRUE - client is shutdown

 FALSE - client is not shutdown

SimulationAnalog

Gets the analog [int] simulation variable, which varies from 0 to 100 (in steps of 1); returns to 0 in

one cycle and then repeats the same pattern (sawtooth waveform).

SimulationDigital

Gets the digital simulation variable, which toggles from 0 to 1 and from 1 to 0, remaining 3 seconds

in each state.

SimulationDouble

Gets the analog [double] simulation variable, which varies from 0 to 100; returns from 100 to 0, and

then repeats the same pattern.

Startup

Gets the client's startup state. Valid values:

 TRUE - client has started up

 FALSE - client has not started up

Ticks

Gets the number of ticks that represent the client's date and time.

6. BluePlant Components

168

Time

Gets the client's time of day.

TimeMs

Gets the client's time of day including milliseconds.

Tomorrow

Gets the day component of the client's tomorrow date.

UserName

Gets the client's user name.

UtcNow

Gets the client’s UTC date and time offset.

Year

Gets the year component of the client's date.

Yesterday

Gets the day component of the client's yesterday date.

CurrentPage

Gets the name.

DateTime

Gets the date and hour of the currently displayed client’s page.

IsWebBrowser

Gets the client state IsWebBrowser. The allowed values are:

 TRUE – the client is running with a Web browser

 FALSE – the client is not running with a Web browser

OnScreenKeyboard

Gets or set the client’s display and keyboard state. Associated parameter: public bool

OnScreenKeyboard { get; set; }. The allowed values are:

 TRUE – keyboard and display functionality is active

 FALSE - keyboard and display functionality is not active

PreviousPage

Gets the client’s previous page name.

ServerHttpAddress

Gets de http adress of the client.

6. BluePlant Components

169

SimulationAnalog

Gets an analog [int] simulation variable, which varies from 0 to 100 (in steps of 1); returns to 0 in

one cycle and then repeats the same pattern (sawtooth waveform)

SimulationDouble

Gets an analog [double] simulation variable, which varies from 0 to 100; returns from 100 to 0, and

then repeats the same pattern.

Advanced Settings

This section contains additional information about the BluePlant applications including:

 Command line

 Running BluePlant as a Windows service

 Remote clients

 Installing Web Server in IIS

Command Lines

The information about the BluePlant toolbars and executables that can be called using command lines

and specific parameters are described below.

TStartup

Starts a BluePlant project.

TVisualizer

Starts the BluePlant Visualizer Module.

TraceWindow

Starts the BluePlant TraceWindow tool.

PropertyWatch

Starts the PropertyWatch diagnostic tool.

ModuleInformation

Starts the Module Information diagnostic tool.

DisableTaskSwitchProtection

The user needs to run the batch file in order to install the device driver that can block the CTRL +

ALT + DEL while the TVisualizer is running.

RegServer

Register the BluePlant OPC Server.

UnRegServer

Unregister the BluePlant OPC Server.

6. BluePlant Components

170

Running BluePlant as a Windows Service

This procedure describes how to install BluePlant applications from the Runtime server to be ran as a

Windows Service.

In order to enable the Distributed Engineering and also to serve pages to WEB clients, the user needs

an enabled Web server too. Further information about this procedure can be found at the Installing

Web Server in IIS section.

In order to run the application as a Windows Service, enter the following command:

<.NET Framework Install Path>\installutil <Install Path>\<BluePlant

Version>\TStartupAsService.exe.

On the DOS prompt (Run as Administrator), execute the following command:

C:\Windows\Microsoft.NET\Framework\v4.0.30319>installutil "C:\Program

Files\Altus\bp-2012.1\TStartupAsService.exe"

Then, enter the command line for the service, which is the same of the tStartup.exe program:

/project:<projectNameAndPath>.

There is no available plugin to setup the register, so the user has to do it manually. The plugin and its

parameters require to be set on the Windows Registry. The user must open the Registry Editor

(regedit), and go to the following key:

"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\TStartup\ImagePath"

"C:\Program Files\Altus\bp-2012.1\TStartupAsService.exe"

"/project:C:\BluePlant Projects\Project1.tproj"

On the examples shown above, the BluePlant installation path must be changed to install in your

computer.

On the "Services" Windows (Administrative Tools), the "TStartup Service" must be set.

It is possible to set the "Automatic" option, so the selected project will open when the computer

starts.

Remote Clients

The only pre-requisite to run the application in remote clients is the .Net Framework installation. The

application does not need to be installed in the client computers. When the BluePlant Server presents

the WebServer (IIS or TWebServer) running, enter the following address from the Internet Explorer

Browser:

Rich Client:

http://<server ip or name>/<BluePlant

Version>/tvisualizerremote.application

Web Client:

http://<server ip or name>/<BluePlant Version>/tvisualizerweb.xbap

Depending on the Internet Explorer version, it may be required the following configuration:

 Disable the protected mode on Internet or Intranet Zone (Figure 6-83).

6. BluePlant Components

171

Figure 6-83. Disable the Protected Mode

 Enable XAML Browser Applications (Figure 6-84).

Figure 6-84. Enable XAML Browser Applications

Example:

Remote Rich Client:

http://127.0.0.1/bp-2012.1/TVisualizerRemote.application

Web Client:

http://127.0.0.1/bp-2012.1/TVisualizerWeb.xbap

Installing Web Server in IIS

When installing the application, if IIS is located, the user will not be able to install our embedded

web server (TWebServer.exe).

The program will run without the Web server, remotely accessing project configurations and serving

Web pages in Runtime. All the others BluePlant engineering or executing tools will run without

installing the TWebServer or IIS configuration.

If the user wants to enable the remote engineering access and web clients through IIS, it is required to

install some services in IIS. This manual explains how to install BluePlant services in IIS. This

description refers to IIS 7.x., yet other versions are quite similar.

The IIS is also required when the user wants to run the RUNTIME as a Windows Service, and still

wants to be able to provide Web pages, iPad clients and remote engineering.

Three services can be installed inside IIS. The first one is theTProjectServer which allows remote

access to the project configurations. The second one is the TVisualizerWeb/TVisualizerRemote

which allows remote access to interfaces in Runtime. The third and last one is the iDataPanel which

is the service to provide data for the iOS devices. The following step-by-step instructions should be

followed to configure the IIS.

6. BluePlant Components

172

Installation Procedure

This procedure may be executed on Windows 7, x64, with 7.5 IIS. In case of older versions of the

operating system and IIS, the procedure can be slightly different, such as the configuration of a

“Virtual Directory” instead of “Add Application”.

 Check if the IIS is installed and functioning properly (trying to open HTML pages, for example)

 Enable ASP.Net and .Svc Handlers for the WCF Service

Installation in IIS 7.x

If IIS was installed after the .NET Framework installation, it is necessary to run the procedure

described on http://msdn.microsoft.com/en-us/library/ms752252.aspx in order to run the following

programs using the prompt command as administrator (see next figures):

"aspnet_regiis –i –enable" (from .NET Framework* installation directory)

Figure 6-85. IIS 7.x Installation Procedure

"ServiceModelReg.exe" -r (from .NET Framework* installation directory)

Figure 6-86. ServiceModelReg.exe

.NET Framework installation directories is:

C:\Windows\Microsoft.NET\Framework\v4.0.30319, or

C:\Windows\Microsoft.NET\Framework64\v4.0.30319 (Windows x64)

Installation in IIS 8.0

For IIS 8.0, follow the procedure described below.

Go to "Program and Features", and choose “Turn Windows features on or off“.

Figure 6-87. Switching Windows Features

http://msdn.microsoft.com/en-us/library/ms752252.aspx

6. BluePlant Components

173

Select the option: “Internet Information Services - World Wide Web Services - Application

Development Features”- ASP.NET 4.5.

Figure 6-88. Windows Features

Select the Net Framework 4.5 Advanced Services check box, and then activate the “HTTP

Activation” option.

Figure 6-89. HTTP Activation

Check if the extension ".svc" is mapped to "aspnet_isapi.dll". The previous link (msdn.microsoft site)

describes how to check this for several IIS versions.

6. BluePlant Components

174

Figure 6-90. Extension Mapping

In the BluePlant installation folder, run the following plugin: InstallTWebServer.exe /uninstall,

which will remove the current TWebServer installation (see Figure 6-91).

Figure 6-91. InstallTWebServer Plugin

Check if the TWebServer is set to start automatically. Open the Windows Register Editor

(regedit.exe) and go to the following Key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run.

If there is any reference to the "TWebServer" entry, it should be deleted.

In IIS 7.x, open "Sites/Default Web Site/Add Application" and configure the information for the

services (Figure 6-92).

Figure 6-92. Information for Services

6. BluePlant Components

175

The settings for the TProjectServer presented in Figure 6-93 are:

 Alias: TProjectServer

 Physical Path (1): verify and set to the BluePlant installation folder

 Application Pool: configure to any set based on .NET 4.0.

Example: ASP.NET v4.0.

Figure 6-93. ProjectServer

Set the access as “Everyone", at least for reading. On IE, use the following URL:

"http://localhost/tprojectserver/service.svc". This is necessary in order to check if the service was

correctly installed. It will show up a page with informations about the service.

Settings for the TVisualizerWeb/TVisualizerRemote:

 Alias: BluePlant version, example: bp-2012.1

 Physical Path: BluePlant installation folder for the specific version

 Application Pool: configure to any set based on .NET 4.0.

 Example: ASP.NET v4.0

Note:

Security: This option must be set as “Everyone", at least for reading. On IE, use the following URL:

http://localhost/fs-2012.1/service.svc. This is necessary in order to check if the service was correctly

installed. It will show up a page with informations about the service.

Settings for the iDataPanel Service (Figure 6-94):

 Alias: iDataPanel

 Physical Path (1): BluePlant installation folder for the specific version

 Application Pool: configure to any set based on .NET 4.0.

Example: ASP.NET v4.0

http://localhost/fs-2012.1/service.svc

6. BluePlant Components

176

Figure 6-94. iDataPanel Service

Note:

Security: This option must be set as “Everyone", at least for reading. On IE, use the following URL:

http://localhost/iDataPanel/iDataPanelService.svc. This is necessary in order to check if the service

was correctly installed. It will show up a page with informations about the service.

Settings for the iDataPanelImages (Virtual Directory) and illustrated in the following images are:

 Alias: iDataPanelImages

 Physical Path: C:\BluePlant Projects\iDataPanelImages

Figure 6-95. Virtual Directory

6. BluePlant Components

177

Figure 6-96. Add Virtual Directory

Notes:

Security: This option must be set as “Everyone", at least for reading.

The “Anonymous Authentication” field must be enabled for services (Figure 6-97).

Figure 6-97. Authentication

IIS must be restarted after the services configuration.

7. Scenarios of Typical Systems

178

7. Scenarios of Typical Systems

This chapter describes the typical BluePlant scenarios to meet the production, utilities and

manufacturing demands.

Moreover, the complete application project may include a combination of these scenarios in order to

satisfy the client customization demands.

Regardless of the considered scenario, it should be kept in mind that BluePlant is made up of a single

package, so the server is always a BluePlant. However, all BluePlant modules such as Alarm,

Historian, Device, Database, etc. may be placed on different computers. As they are managed by the

BluePlant Server the result is a distributed system context.

Based on these assumptions there are some possible configurations, which are described below.

Systems Configurations

Standalone System

This system is characterized by a BluePlant installation running the SCADA server and the client in

the same computer.

Figure 7-1. Stand Alone Systyem

Distributed Inputs/Outputs System

This system is characterized by a BluePlant server machine and device modules running on

computers dedicated to the communication with the process. In this case the SCADA client can be

placed in the same server computer or in another one. Figure 7-2 illustrates this configuration.

7. Scenarios of Typical Systems

179

Figure 7-2. Distributed Inputs/Outputs System

This model is also useful in plants that have devices with serial port or limited capability

communication. By placing I/O servers in the factory to interact with these devices, it is possible to

optimize the communication on slow or with low bandwidth networks and achieve a better global

performance.

Despite the geographical distribution of I/O servers in several plants, this type of architecture can be

configured as a single cluster system, as long as it is able to support multiple I/O servers.

Client and Server System

This system complies a server BluePlant where the alarm, historian, database modules are being

executed and the SCADA clients are being executed in other computers in the LAN. The Figure 7-3

shows this system.

Figure 7-3. Client and Server System

The architecture client server alows that the clients can be disributed in many computers in the LAN

creating a system that offers benefits in flexibility and performance. This type of architecture also can

be configured as a unique cluster system.

7. Scenarios of Typical Systems

180

Redundant Server System

The Redundant Server System presents two different computers running BluePlant servers, where the

redundancy is done automatically by the supervisory itself. Thus it is necessary only to specify the IP

addresses of the primary and secondary stations. The following redundancy configurations are

available:

 The Alarm and/or Historian database running on a third machine dedicated to historical data,

according to Figure 7-4;

 The embedded databases in the primary and secondary servers are used to store the historical

data of Alarm and/or Historian modules, with automatic data synchronization between them.

Figure 7-5 shows that system.

Figure 7-4. Redundant Server System

Figure 7-5. Redundant Server System Embedded Database

The possibility to define the primary and secondary servers within a project allows the integration of

hardware redundancy in the system infrastructure. This helps to avoid situations where an error

7. Scenarios of Typical Systems

181

occurs in a server in the global system, causing it to be inoperable. Systems of this kind are

interesting to ensure uninterrupted operation and reliability in data collection.

Other possible configuration is the device communication redundancy, where the server(s) have the

option to communicate with the primary or the backup device. This redundancy is enabled

configuring the IPs addresses of the devices. The BluePlant is responsible to manage the switch

between the primary and backup device when a failure in communication happens with BluePlant

and the device.

Figure 7-6. Redundant Server System with Devices Redundancy

Control System

In the Control System it is possible to have multiple servers in different plants (different projects) in

a distributed architecture. This configuration allows to access, in a control room, any of these plants

through specific clients. It is important to mention that the clients of the plants will not be integrated

in one machine, so it is necessary to specify which plant user wants to watch. Figure 7-7 illustrates

this system.

7. Scenarios of Typical Systems

182

Figure 7-7. Control System

In this scenario, the system is organized in discrete locations controlled by local operators supported

by local redundant servers. At the same time, a management level in a central control room can be

characterized to monitor all sites simultaneously. Each site is represented in the project as a separate

cluster, grouping their primary and standby servers.

Distributed and Redundant Distributed Control System

This system includes a BluePlant Server machine and Alarm modules, Historian, Database and

SCADA Clients in other computers of the LAN network. Thus, each module runs in a separate

computer. Figure 7-8 shows that system.

Figure 7-8. Distributed Control System

The client-server architecture allows the modules to be distributed across multiple computers on a

LAN, creating a system that provides benefits of flexibility and performance. Each component is

identified, in the project scope, by an address, which allows their location and hardware requirements

to be considered as independent ones. This type of architecture can also be configured as a single

cluster system.

7. Scenarios of Typical Systems

183

This is a redundant system, but with its pair in a different location. This configuration requires a

network with high transmission rates between localities, since it has an expressive amount of data

exchanged among the pairs of servers. Figure 7-9 shows this scenario.

Figure 7-9. Redundant Distributed Control System

In this scenario, the project presents sites which are operated locally. Each one contains its own set of

servers and clients.

In case the site becomes inoperative, the uninterrupted monitoring is guaranteed by distributing the

primary and secondary servers between different sites, or putting up the secondary servers in a

central location.

A cluster is used to define the role of servers in each site, and can be viewed on a common project,

running on each client.

Load Sharing System

This system is similar to the client and server one mentioned previously, but the redundancy is only

in the device module. This system allows a better use of the available infrastructure, since it enables

the sharing of workload between different computers and CPUs.

This approach can be used to improve network performance, data access times and the overall

stability of the system.

Moreover, through clusters is possible to run multiple servers of the same type in a single computer.

On the other hand, the distribution of servers in two clusters allows them to operate as redundant

units between them, which reduces the required number of computers.

8. Glossary

184

8. Glossary

AppDomain The limit provided by CLR (Common Language Runtime) around objects created from the same
application scope.

The application domains help to isolate objects created in one application from those created in other
applications. The TRuntime.exe runs on a different AppDomain than other modules (Device Module,
Visualizer). Term related to Microsoft dotNet.

Assembly "Assembly" refers to an executable file (.EXE) or Library (.DLL) created using managed code and the
Microsoft .NET framework. Term related to Microsoft dotNet.

Designer Development component of the program manager used for the design of synoptic screens. Synoptic
screens are graphical representations of industrial processes that are generated in the draw environment.

Device Module Module that allows the implementation of communication protocols (Devices) on the remote machine to
the server that is running the Project and maintains the Runtime.

Domain, Server
Domain, Client Domain

Refers to values and the location of objects in Runtime.

"Server Domain objects running on the server" signifies object(s) running on the Server. Values
associated with that object are system-wide; "Client Domain" signifies that the object is running on the
Client station and each client machine may have different values.

Internal Module Features and programs that implement internal system functions that run without any user configuration.

Examples are the Network Synchronization task and the Background Report Generator. Some BluePlant
tools e.g., ModuleInformation.exe, may display status information of those internal Modules, however that
information is required only for advanced system optimizations. Example: The synchronization module.

Main Project File "Main Project File" refers to the BluePlant-encrypted SQL database that contains the Project
configuration. The extension .TPROJ denotes the current Project under development. The extension
.TENG denotes Published Read-Only projects.

Modifier
(Device/Points)

Auxiliary parameter to effect read and write points on a device, the treatment of Arrays, bit masks,
strings, swap and other operations in which a DataType definition cannot define them completely.
(additional parameters are required to define the DataType).

Module A Program that accesses the database in real time (RtDB) and can be composed of one or more
Assemblies. Example: Manager.XBAP is a Project Configuration Module that provides to the User, the
access to its online name via the URL of the browser.

Namespace An address space.

All objects created within a Namespace have unique names. Namespace can be understood also as a
setting to create a hierarchy among objects. Example: All process variables are grouped in the
namespace Tag, all reports created are grouped in the namespace report.

ObjectType (RunObj
type)

Determines the type of Runtime objects. An object, for example, can have the following Runtime types:
display, report e ScriptFunction.

Objects, RunTime
Objects

Runtime Objects are all the visible objects (via their names) which can be accessed via scripts or
exhibited in the project. Examples: Tags, Reports, Displays and others.

Also must be used by module developers. For example, the Alarm Module will start and update the
values of Runtime objects associated with the Alarms.

ObjectValues,
PropertyValue

RuntimeObjects (e.g., Tags, device Nodes, etc.) can have one or more defined properties.

The TAG object (and its Value), presents properties such as: Min, Max, and Description.

During the specific configuration of project, "PropertyValue" or "ObjectValue" entries are required. The
complete name must be specified until the final property value, i.e., TAG.mytag.Min or
Tag.MyTag.Description

For some configurations, like alarm items, historian or device points, that specify the main OBJECT
(Tag.MyTag, in this example), the system will assume the VALUE property by default to execute the
operation.

ObjectWatch Diagnostic utility to verify and modify values of objects at Runtime.

Parameters
(TagConfiguration)

Definition of behavior parameters and values of the processing Tags. Example: CounterUP for
accountants, or DeadBand smoothing Tags for integers

Project A set of BluePlant configurations, Display drawings, Reports, documents and user Notes that are created
and edited as a single entity.

projectDB or
ProjectDatabase

ProjectDB (or ProjectDatabase) is a proprietary database that contains configuration information.

Corresponds to files with extension <project>.Tproj (e.g., Current) or <project> _ VERSION.Teng (type
Release).

Property Property (value) associated with a Tag or a Runtime object.

RunDB, Runtime
Database

A real time Database created when the Project is running. All Runtime objects accessible via script (such
as Tags, Reports) are generated internally, with encapsulated code and accessible through the class
RunDB.

The RunDB corresponds to the first level of the tree of Runtime objects.

8. Glossary

185

Runtime A Project with loaded and running Runtime Modules.

Runtime Startup Operation that allows the execution of a Project.

This operation can be executed from the program TStartup.exe in the current version of BluePlant, or
from TServer.exe in the published version of the project.

RuntimeDB RuntimeDB is a database copy of the ProjectDB that contains specific information about the RuntimeDB
when a Runtime version is Published.

Corresponds to the files with <project> _ <version>.trun.

Tag Process variable. Name of a Namespace that includes all the variables created by user in a Project
configuration.

Tag type Defines the type of objects in the Namespace Tag. Example: Digital, Analog and Text.

These tags are a class of Properties accessed directly, such as: Min, Max, Value, and Quality. Each
property is internally created as a ValueType.

Task (Script.Task) Task Program written in VB.NET (or C #) that runs on the server or the client during Runtime of a Project.
Execution will be in the server or client, depending upon the Domain property set in the script.

TManager Program that performs the configuration of a project.

Toggle Inverts the value of a variable. Values greater than zero are converted to zero; zero is converted to the
value "1".

Partial Trust, Full Trust Partial Trust: Environment in which an application has limited access to resources (restricted access to
files of particular folders, running of other applications, etc.). XBAP applications which run within a
browser (e.g., Internet Explorer) should run in "Partial Trust".

Full Trust: Environment in which an application has access to all system resources. Applications installed
on a computer usually run in "Full Trust". Term related to Microsoft dotNet.

TWelcome Initial BluePlant and project selection screen

Visibility (Tag Visibility) Refers to the tagging system; Tags can be Private, Public or Protected.

Public: The value of the Tag during the execution is available for access of external Programs via TCP /
IP or OPC Server. Also, the value of Tag is necessarily global or shared in all the client stations (Server
Domain).

Protected: Read-only.

Private: A Tag set to "Private" cannot be accessed by external applications (OPC Server, TCP / IP) and
will run in Client or Server according to the application configuration with the following characteristics:

• Tags used only in modules called by the client (such as displays and Reports) and run in the scope of
the client. May have different values on each client machine (Client Domain);

• Tags used in server modules, such as Devices and Alarms. Have a unique value in the system (Server
Domain).

Xbap XAML browser application (XBAP) is an application that runs inside a browser (IE). Term related to
Microsoft dotNet.

	Summary
	1. BluePlant Technical Support
	Introduction
	Documents Related to this Manual
	Visual Inspection
	Technical Support
	Warning Messages Used in this Manual

	2. BluePlant Series
	BluePlant Characteristics
	BluePlant Models
	Available Models
	Related Products
	Solution for System Integrators
	Accessories

	3. BluePlant Technical Description
	Models General Features
	Common General Features
	General Features
	Intrinsic Safety Software
	Superior Graphical Engine
	Maintenance Capabilities, Testing and Enhanced Diagnostics
	Built-in Servers and .NET Extensions

	Innovative Product Features
	Real Time Database (Tags)
	.NET Languages and Scripts
	Alarms and Security
	Trend and Historian
	Devices and Networks
	Datasets
	Reports
	Client Displays
	Runtime Objects
	Module Isolation
	Runtime and Diagnostics Tools
	Project Test and Deployment
	Communication Drivers

	4. BluePlant
	Installation and Operation Minimum Requirements
	Installation
	Licenses and Hardkey
	Starting BluePlant
	Project Management

	Getting Started with BluePlant
	Selecting the Demo Project
	Creating a New Project
	User Interface
	Creating Tags in the Project
	Associating Tags to a Communication Protocol
	Including Objects in the Main Screen
	Adding Symbols
	Adding Text

	Running a Project
	Project Build
	Project Test
	Project Startup
	Project Publication

	5. BluePlant Main Menu
	Application Editing
	Application Diagramming
	Application Execution
	Application Information

	6. BluePlant Components
	Edit Menu
	Editing Tags
	Edit Tag Objects
	Name
	Type
	Parameters
	Min
	Max
	Eng Units
	Format
	Visibility
	Domain
	Array
	Startup Value
	Retentive

	Edition of User Defined Types
	Name
	Type
	Array
	Reference
	Min/Max
	Eng Units
	Start Value
	Retentive

	Historian Edit
	TagName
	DeadBand
	Deviation
	RateOfChange
	HistorianTable

	Binding Tags
	Name
	BindingMode
	Source Property

	Editing Security Settings
	Users Edit
	Edit Permissions
	Name
	Edit
	Run

	Editing Devices
	Channels
	Name
	Protocol
	ProtocolOptions
	Interface
	Settings
	Timeout
	Create a Communication Channel

	Nodes
	Name
	Channel
	Primary Station
	Backup Station

	Points
	Name
	Nodes
	Address
	Date Type
	Modifiers
	AccessType
	Scaling

	Access Type
	Name
	ReadPooling
	PoolingRate
	OnStartup
	WriteEnable
	WriteEvent
	AcceptUnsolicited

	Editing Alarms
	Alarm Groups
	Name
	AckRequired
	Sound
	Show
	Log Events
	Colors

	Alarm Items
	Name
	Condition
	Limit
	Group
	Priority
	Message

	Editing Databases
	DBs
	Name
	Provider
	Database
	Connectionstring
	NameLogon
	Password
	Excel Connection
	Connection with Oracle Database
	Connection with SQLServer Database

	Tables
	Name
	DB
	TableName
	WhereCondition
	Access
	Mapping

	Queries
	Name
	DB
	SQLStatement
	Mapping

	Files
	Name
	FileName
	FileType
	Objects

	Editing Scripts
	Tasks
	Name
	Code
	Trigger
	Period
	Domain
	BuildStatus
	BuildErrors

	Classes
	Name
	Code
	Domain

	CodeEditor
	Using Script Tasks

	Editing Displays
	Displays
	Name
	Mode
	Preview
	AlowSelection
	RunSecurity
	Configuring Multiple Monitors

	Layouts
	Page
	Docking
	HorizontalAling
	VerticalAling
	Margins

	Resources
	Name
	Preview

	Editing Reports
	Name
	Padding
	SaveFormat
	Save File Name
	TextEditor

	Draw Menu
	Selection Tools
	Geometric Objects
	Display Components
	Input and Output Text Tools
	Symbols Library
	Advanced Controls
	Alarm
	Trend
	Data Grid
	Horizontal Toolbar
	Dynamic Configuration
	Action
	Shine
	TextIO
	HyperLink
	FillColor
	LineColor
	TextColor
	Bargraph
	Visibility
	Move and Drag
	Scale
	Rotate
	Skew
	TextOutput

	CodeBehind
	Symbols
	Creating Symbols
	Changing a Symbol

	Info Menu
	Project
	Version
	Settings
	Project Settings
	BluePlant Model
	Model
	Culture Info
	Target Framework
	Code Language
	Default Page Size

	Redundancy
	Track
	Tables
	TableName
	Lines
	DateModified
	ChangedSinceBuild
	ChangedSincePublish
	Comments

	Changes
	Module
	ObjectName
	RowState
	Build
	Date
	Comments

	Releases
	Versionstring
	Build
	DatePublished
	User

	Notes

	Application Tools
	Tstartup
	PropertyWatch
	TraceWindow
	TraceWindow Message

	ModuleInformation

	Runtime Objects
	Namespace Tag
	ClassTagObj
	ForceValue
	Tostring
	Alarm Disable
	Alarm State
	GetName
	AlarmUnack
	Changed
	Domain
	EngUnits
	Format
	Historian
	Locked
	Quality
	Retentive
	TimeStamp
	ValueType
	Visibility

	Class Digital
	Toogle
	Lock
	State
	Value

	Class Analog
	Class Analog<T>
	Deadband
	LockValue
	Analog.Min
	Analog.Min
	StartValue
	State

	Class AnalogInt
	Class AnalogDecimal
	Class AnalogDoble
	Class Text
	LockValue
	Value

	Class TDataTime
	LockValue
	Value

	Class Counter
	Event
	Model
	Trigger

	Class Timer
	Interval
	Model

	Class Reference
	Link

	Class TDataTable
	Initialize
	Table
	OverwriteOnUpdate
	Update

	Class UserType

	Namespace Security
	Class ModuleSecurity
	GetPasswordHint
	AddRuntimeUser
	GetListOfUserNames
	RemoveRuntimeUser
	Permission
	User
	Policy

	Class SecurityPermission
	DateCreated
	DateModified
	Description
	Edit
	Name
	Run

	Class SecurityUser
	DateCreated
	DateModified
	PolicyName
	SecurityUser.Blocked
	SecurityUser.Deleted
	SecurityUser.Name
	SecurityUser.PasswordHint
	SecurityUser.Permissions
	SecurityUser.PermissionsName
	SecurityUser.Policy
	SecurityUser.Profile

	Namespace Alarm
	Class AlarmGroup
	AckAll
	AckRequired
	Colors
	Description
	Disable
	Id
	LogEvents
	PriorityItem
	Show
	Sound
	TotalCount
	UnAckCount

	Class AlarmItem
	AckTime
	ActiveTime
	Alarm
	ColorBG
	ColorFG
	Condition
	Deadband
	Disable
	Group
	Id
	Limit
	Message
	NormTime
	Priority
	Setpoint
	SetPointDeadband
	State
	UnAck

	Class ModuleAlarm
	AckAll
	BeepState
	Group
	InitializationMessage
	Item
	LastErrorMessage
	LastStoredTimeStamp
	PriorityItem
	QueryActive
	TotalCount
	UnAckCount

	Namespace Device
	Class DeviceAccessType
	AcceptUnsolicited
	ReadOnStartup
	ReadPooling
	ReadPoolingRate
	WriteEnable

	Class DeviceChannel
	Activity
	LastErrorCode
	LastErrorDateTime
	Status

	Class DeviceNode
	Activity
	BackupStation
	IsBackup
	IsPrimary
	IsRedundancyEnabled
	LastErrorCode
	LastErrorDateTime
	PrimaryStation
	Status

	Class ModuleDevice
	AccessType
	Channel
	Node

	Namespace Dataset
	Class DatasetDB
	Connectionstring
	Database
	Id
	LogonName
	Provider

	Class DatasetFile
	LoadCommand
	SaveCommand
	Completed
	Description
	Disable
	FileName
	FileType
	Id
	LastStatus
	LastStatusMessage
	Load
	LoadExecuted
	Objects
	Save
	SaveExecuted

	Class DatasetQuery
	ExecuteCommand
	ExecuteCommandWithStatus
	NextCommand
	NextCommandWithStatus
	SelectCommand
	SelectCommandWithStatus
	AsyncContents
	Completed
	CursorIndex
	DB
	Description
	Disable
	Execute
	ExecuteCompleted
	Id
	LastStatus
	LastStatusMessage
	Mapping
	Next
	NextExecuted
	RowCount
	Select
	SelectExecuted
	SqlStatement

	Class DatasetTable
	DeleteCommand
	DeleteCommandWithStatus
	InsertCommand
	InsertCommandWithStatus
	NextCommand
	NextCommandWithStatus
	SelectCommand
	SelectCommandWithStatus
	UpdateCommand
	UpdateCommandWithStatus
	Access
	AsyncContents
	Completed
	CursorIndex
	DB
	Delete
	DeleteExecuted
	Description
	Disable
	Id
	Insert
	InsertExecuted
	LastStatus
	LastStatusMessage
	Mapping
	Next
	NextExecuted
	RowCount
	Select
	SelectExecuted
	TableName
	Update
	UpdateExecuted
	WhereCondition

	Class ModuleDataset
	DB
	File
	Query
	Table

	Namespace Script
	Class ModuleScript
	RunTasksSimultaneous
	Task
	UserClass

	Class ScriptTask
	Description
	Disable
	Domain
	ErrorMessage
	Event
	ExecutionsCount
	LastCPUTime
	LastExecution
	Period
	Running
	StopExecutionOnError
	Trigger

	Namespace Display
	Class Display
	Close
	Open
	Description
	Id
	IsOpened

	Class Layout
	OpenCommand
	Description
	Id
	IsOpened

	Namespace Report
	Class ModuleReport
	Class ReportItem
	OpenCommand
	SaveCommand
	Append
	Completed
	Description
	Disable
	Id
	LastStatus
	LastStatusMessage
	OpenExecuted
	Padding
	SaveExecuted
	SaveFileName
	SaveFormat

	Namespace Info
	Class ModuleInfo
	Trace
	License
	ExecutionPath
	Module
	OnlineConfig
	Project
	ProjectSettings
	TestMode
	TestModeSync

	Class InfoprojectVersion
	CurrentBuild
	DateCreated
	DateModified
	Description
	ProductFamily
	ProductModel
	ProductName
	ProductVersion
	ProjectName
	ProjectPath
	TargetFramework
	Versionstring

	Class InfoProjectSettings
	CultureInfo

	Class InfoModuleList
	Alarm
	DataSet
	Device
	Display
	Historian
	ModuleInformation
	OPCServer
	PropertyWatch
	Report
	ReportServer
	Script
	Security
	Server
	TraceWindow

	Class InfoLicense
	AllowedRichClients
	AllowedRunInstances
	AllowedTagElements
	AllowedWebClients
	DateCreated
	DateModified
	ExpirationDate
	LicenseMedia
	LicenseType
	ProductFamily
	ProductModel
	ProductVersion
	SerialNumber
	ServerConnected
	AllowedEngineeringUsers
	AllowedDevices

	Class InfoModule
	IsPaused
	IsRunning

	Namespace Server
	ServerStation
	LoadProjectVersion
	SwitchToStandby
	HttpAddress
	IsPrimary
	IsRedundancyEnabled
	IsSecondary
	IsStandByActive
	IsSwitchToPrimaryEnabled
	ServerStation.ComputerIP
	ServerStation.ComputerName
	ServerStation.Date
	ServerStation.Day
	ServerStation.DayOfWeek
	ServerStation.DayOfYear
	ServerStation.Hour
	ServerStation.Minute
	ServerStation.Month
	ServerStation.Now
	ServerStation.Second
	ServerStation.ShutDown
	ServerStation.Startup
	ServerStation.Ticks
	ServerStation.Time
	ServerStation.Year
	TimeMs

	Namespace Client
	Class ClientStation
	ChangeUserPassword
	CloseDisplay
	GetPasswordHint
	Locale
	LogOn
	LogOnGuest
	OpenDisplay
	OpenDisplayAtIndex
	OpenLayout
	OpenPopupNote
	OpenPreviousPage
	SaveLayoutAsImage
	SaveLayoutAsImageFile
	SwitchToStandby
	BeepOff
	BlinkFast
	BlinkSlow
	ComputerIP
	ComputerName
	CultureInfo
	CurrentPage
	CurrentUser
	Date
	DateTime
	Day
	DayOfWeek
	DayOfYear
	Dictionary
	Hour
	InputPassword
	InputUserName
	LayoutName
	Millisecond
	Minute
	Month
	Now
	OnScreenKeyboard
	PreviousPage
	Second
	SelectedPage
	ServerHttpAddress
	ShutDown
	SimulationAnalog
	SimulationDigital
	SimulationDouble
	Startup
	Ticks
	Time
	TimeMs
	Tomorrow
	UserName
	UtcNow
	Year
	Yesterday
	CurrentPage
	DateTime
	IsWebBrowser
	OnScreenKeyboard
	PreviousPage
	ServerHttpAddress
	SimulationAnalog
	SimulationDouble

	Advanced Settings
	Command Lines
	TStartup
	TVisualizer
	TraceWindow
	PropertyWatch
	ModuleInformation
	DisableTaskSwitchProtection
	RegServer
	UnRegServer

	Running BluePlant as a Windows Service
	Remote Clients
	Installing Web Server in IIS
	Installation Procedure
	Installation in IIS 7.x
	Installation in IIS 8.0

	7. Scenarios of Typical Systems
	Systems Configurations
	Standalone System
	Distributed Inputs/Outputs System
	Client and Server System
	Redundant Server System
	Control System
	Distributed and Redundant Distributed Control System
	Load Sharing System

	8. Glossary

